Publications by authors named "Francis L C Morgan"

The development of next generation soft and recyclable materials prominently features dynamic (reversible) chemistries such as host-guest, supramolecular, and dynamic covalent. Dynamic systems enable injectability, reprocessability, and time-dependent mechanical properties. These properties arise from the inherent relationship between the rate and equilibrium constants (RECs) of molecular junctions (cross-links) and the resulting macroscopic behavior of dynamic networks.

View Article and Find Full Text PDF

Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent.

View Article and Find Full Text PDF

Cartilage tissue presents low self-repair capability and lesions often undergo irreversible progression. Structures obtained by tissue engineering, such as those based in extrusion bioprinting of constructs loaded with stem cell spheroids may offer valuable alternatives for research and therapeutic purposes. Human mesenchymal stromal cell (hMSC) spheroids can be chondrogenically differentiated faster and more efficiently than single cells.

View Article and Find Full Text PDF

Pluripotent stem cell-derived kidney organoids offer a promising solution to renal failure, yet current organoid protocols often lead to off-target cells and phenotypic alterations, preventing maturity. Here, various dynamic hydrogel architectures are created, conferring a controlled and biomimetic environment for organoid encapsulation. How hydrogel stiffness and stress relaxation affect renal phenotype and undesired fibrotic markers are investigated.

View Article and Find Full Text PDF

Rational design of hydrogels that balance processability and extracellular matrix (ECM) biomimicry remains a challenge for tissue engineering and biofabrication. Hydrogels suitable for biofabrication techniques, yet tuneable to match the mechanical (static and dynamic) properties of native tissues remain elusive. Dynamic covalent hydrogels possessing shear-thinning/self-healing (processability) and time-dependent cross-links (mechanical properties) provide a potential solution, yet can be difficult to rationally control.

View Article and Find Full Text PDF

Differentiated kidney organoids from induced pluripotent stem cells hold promise as a treatment for patients with kidney diseases. Before these organoids can be translated to the clinic, shortcomings regarding their cellular and extracellular compositions, and their developmental plateau need to be overcome. We performed a proteomic analysis on kidney organoids cultured for a prolonged culture time and we found a specific change in the extracellular matrix composition with increased expression of types 1a1, 2 and 6a1 collagen.

View Article and Find Full Text PDF

Supramolecular and dynamic biomaterials hold promise to recapitulate the time-dependent properties and stimuli-responsiveness of the native extracellular matrix (ECM). Host-guest chemistry is one of the most widely studied supramolecular bonds, yet the binding characteristics of host-guest complexes (β-CD/adamantane) in relevant biomaterials have mostly focused on singular host-guest interactions or nondiscrete multivalent pendent polymers. The stepwise synergistic effect of multivalent host-guest interactions for the formation of dynamic biomaterials remains relatively unreported.

View Article and Find Full Text PDF

The development of bioinks for bioprinting of cell-laden constructs remains a challenge for tissue engineering, despite vigorous investigation. Hydrogels to be used as bioinks must fulfill a demanding list of requirements, mainly focused around printability and cell function. Recent advances in the use of supramolecular and dynamic covalent chemistry (DCvC) provide paths forward to develop bioinks.

View Article and Find Full Text PDF

Bioprinting techniques allow for the recreation of 3D tissue-like structures. By deposition of hydrogels combined with cells (bioinks) in a spatially controlled way, one can create complex and multiscale structures. Despite this promise, the ability to deposit customizable cell-laden structures for soft tissues is still limited.

View Article and Find Full Text PDF

The remarkable rise of organometal halide perovskites as solar photovoltaic materials has been followed by promising developments in light-emitting devices, including lasers. Here we present unique insights into the processes leading to photon emission in these materials. We employ ultrafast broadband photoluminescence (PL) and transient absorption spectroscopies to directly link density dependent ultrafast charge dynamics to PL.

View Article and Find Full Text PDF