Radiation exposure poses a significant threat to human health. Emerging research indicates that even low-dose radiation once believed to be safe, may have harmful effects. This perception has spurred a growing interest in investigating the potential risks associated with low-dose radiation exposure across various scenarios.
View Article and Find Full Text PDFThe need for efficient computational screening of molecular candidates that possess desired properties frequently arises in various scientific and engineering problems, including drug discovery and materials design. However, the enormous search space containing the candidates and the substantial computational cost of high-fidelity property prediction models make screening practically challenging. In this work, we propose a general framework for constructing and optimizing a high-throughput virtual screening (HTVS) pipeline that consists of multi-fidelity models.
View Article and Find Full Text PDFTRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a transcription factor-gene regulatory network (TRN), which is modeled through a Bayesian network (BN). In this article, we focus on sensitivity analysis of metabolic flux prediction for uncertainty quantification of BN structures for TRN modeling in TRIMER.
View Article and Find Full Text PDFClassification has been a major task for building intelligent systems because it enables decision-making under uncertainty. Classifier design aims at building models from training data for representing feature-label distributions-either explicitly or implicitly. In many scientific or clinical settings, training data are typically limited, which impedes the design and evaluation of accurate classifiers.
View Article and Find Full Text PDFThis protocol explains the pipeline for condition-dependent metabolite yield prediction using Transcription Regulation Integrated with MEtabolic Regulation (TRIMER). TRIMER targets metabolic engineering applications via a hybrid model integrating transcription factor (TF)-gene regulatory network (TRN) with a Bayesian network (BN) inferred from transcriptomic expression data to effectively regulate metabolic reactions. For and yeast, TRIMER achieves reliable knockout phenotype and flux predictions from the deletion of one or more TFs at the genome scale.
View Article and Find Full Text PDFThere has been extensive research in predictive modeling of genome-scale metabolic reaction networks. Living systems involve complex stochastic processes arising from interactions among different biomolecules. For more accurate and robust prediction of target metabolic behavior under different conditions, not only metabolic reactions but also the genetic regulatory relationships involving transcription factors (TFs) affecting these metabolic reactions should be modeled.
View Article and Find Full Text PDFTranslating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2015
In materials science and many other research areas, models are frequently inferred without considering their generalization to unseen data. We apply statistical learning using cross-validation to obtain an optimally predictive coarse-grained description of a two-dimensional kinetic nearest-neighbor Ising model with Glauber dynamics (GD) based on the stochastic Ginzburg-Landau equation (sGLE). The latter is learned from GD "training" data using a log-likelihood analysis, and its predictive ability for various complexities of the model is tested on GD "test" data independent of the data used to train the model on.
View Article and Find Full Text PDFBuilding on the work [C. R. Doering, P.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2008
We present a general numerical scheme for the practical implementation of statistical moment closures suitable for modeling complex, large-scale, nonlinear systems. Building on recently developed equation-free methods, this approach numerically integrates the closure dynamics, the equations of which may not even be available in closed form. Although closure dynamics introduce statistical assumptions of unknown validity, they can have significant computational advantages as they typically have fewer degrees of freedom and may be much less stiff than the original detailed model.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2006
We present an efficient computational approach to sample the histories of nonlinear stochastic processes. This framework builds upon recent work on casting a d-dimensional stochastic dynamical system into a (d+1)-dimensional equilibrium system using the path-integral approach. We introduce a cluster algorithm that efficiently samples histories and discuss how to include measurements that are available into the estimate of the histories.
View Article and Find Full Text PDF