In this article, we propose that an organism's general architecture is of primary importance for its ability to perceive electromagnetic radiation. Animals develop mainly as volumes for internal assimilation and appendages to increase their mobility, while plants develop as surfaces to optimize interaction with the environment. As a consequence, the proportion of cells directly interacting with EMF radiation at the organism/environment interface is much higher in plants than it is in animals, making them especially suited to study EMF effects on life.
View Article and Find Full Text PDFAttachment of branches in Schefflera is unusual in that it involves fingerlike woody extensions that originate in the cortex and pass gradually into the woody cylinder of the parent shoot. We tested the hypothesis that these structures could be roots since Schefflera is a hemi-epiphyte with aerial roots. These branch traces originate by secondary development in the many leaf traces (LTs) of the multilacunar node together with associated accessory traces.
View Article and Find Full Text PDF