For millions of years, barnacles and mussels have successfully adhered to wet rocks near tide-swept seashores. While the chemistry and mechanics of their underwater adhesives are being thoroughly investigated, an overlooked aspect of marine organismal adhesion is their ability to remove underlying biofilms from rocks and prepare clean surfaces before the deposition of adhesive anchors. Herein, we demonstrate that nonionic, coacervating synthetic polymers that mimic the physicochemical features of marine underwater adhesives remove ∼99% of () biofilm biomass from underwater surfaces.
View Article and Find Full Text PDFThree-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet.
View Article and Find Full Text PDFOver 80% of all chronic bacterial infections in humans are associated with biofilms, which are surface-associated bacterial communities encased within a secreted exopolysaccharide matrix that can provide resistance to environmental and chemical insults. Biofilm formation triggers broad adaptive changes in the bacteria, allowing them to be almost 1000-fold more resistant to conventional antibiotic treatments and host immune responses. The failure of antibiotics to eliminate biofilms leads to persistent chronic infections and can promote the development of antibiotic-resistant strains.
View Article and Find Full Text PDFAntibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as β-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum β-lactamases (ESBLs).
View Article and Find Full Text PDFThe ubiquitin/proteasome pathway is a well characterized system for degrading intracellular proteins, although many aspects remain poorly understood. There is, for instance, a conspicuous lack of understanding of the site(s) where nuclear proteins are degraded because the subcellular distribution of peptidase activity has not been investigated systematically. Although nuclear proteins could be degraded by importing proteasomes into the nucleus, it is also evident that some nuclear proteins are degraded only after export to cytosolic proteasomes.
View Article and Find Full Text PDFAlcohol consumption increases breast cancer risk in postmenopausal women in a dose-dependent manner. The objective of the present study was to determine if the effect of alcohol on mammary cancer is modified by body weight and exogenous estrogen. Ovariectomized mice of various body weights, receiving estrogen or placebo supplementation, and consuming water or alcohol were injected with mammary cancer cells.
View Article and Find Full Text PDF