Publications by authors named "Francis Coffey"

Unlike αβ-T lineage cells, where the role of ligand in intrathymic selection is well established, the role of ligand in the development of γδ-T cells remains controversial. Here we provide evidence for the role of a bona fide selecting ligand in shaping the γδ-T cell-receptor (TCR) repertoire. Reactivity of the γδ-TCR with the major histocompatibility complex (MHC) Class Ib ligands, H2-T10/22, is critically dependent upon the EGYEL motif in the complementarity determining region 3 (CDR3) of TCRδ.

View Article and Find Full Text PDF

Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2-/-) mice, much like Appl1-/- mice, are viable and grow normally to adulthood.

View Article and Find Full Text PDF

Gradations in extracellular regulated kinase (ERK) signaling have been implicated in essentially every developmental checkpoint or differentiation process encountered by lymphocytes. Yet, despite intensive effort, the molecular basis by which differences in ERK activation specify alternative cell fates remains poorly understood. We report here that differential ERK signaling controls lymphoid-fate specification through an alternative mode of action.

View Article and Find Full Text PDF

Although ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53-dependent arrest of ab T cell progenitors at the b-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development.

View Article and Find Full Text PDF

αβ and γδ T cells are thought to arise from a common precursor in the thymus but play distinct roles in pathogen resistance. Although conventional αβ T cells exit the thymus in a naive state and acquire effector function in the periphery, the effector fate of many γδ T cells is specified in the thymus and exhibits limited plasticity thereafter. This review describes the current models that have been proposed to explain the acquisition of effector fate by γδ T cells, as well as the apparent linkage to Vγ gene usage.

View Article and Find Full Text PDF

Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors, including TCR-ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate.

View Article and Find Full Text PDF

Appl1 (Adaptor protein containing pleckstrin homology [PH], phosphotyrosine binding [PTB], and Leucine zipper motifs) is an adaptor that participates in cell signaling by interacting with various signaling molecules including Akt, PI3-kinase (PI3K), Rab5, adiponectin receptor, and TrkA. By using RNA knockdown technology, Appl1 has been implicated in zebrafish development and murine glucose metabolism. To investigate the unambiguous role of Appl1 in vivo, we generated a knockout mouse in which exon1 of the Appl1 gene was disrupted using gene trap methodology.

View Article and Find Full Text PDF

High levels of the Fas-signaling antagonist cellular FLIP (cFLIP) in germinal center (GC) B cells suggests an important role for this factor during this stage of the T cell-dependent B cell immune response. To test this idea, we used mice with B cell-specific deletion of a floxed cFLIP allele. Although deletion of cFLIP did not alter their primary development, participation of cFLIP-deficient B cells in the immune response was severely perturbed.

View Article and Find Full Text PDF

Current models of the germinal center (GC) response propose that after stimulation at the edges of T cell zones, pre-GC B cells directly migrate to the center of follicles and proliferate to form GCs. We followed the interrelationship of proliferation, differentiation, and microenvironmental locale in populations of pre-GC B cells responding to antigen. In contrast to the predictions of current models, after accumulation at the T-B interface, these cells appeared at the perimeter of follicles adjacent to the marginal zone.

View Article and Find Full Text PDF

Fas/Apo-1 signals through the FADD (Fas-associated death domain) adaptor protein, which recruits and activates the apical caspase 8 and leads to apoptosis. Cellular FLIP (cFLIP) is a homolog of caspase 8 and is also capable of binding to FADD. Previous studies suggest that cFLIP could either enhance or inhibit apoptosis and lead to NF-kappaB and Erk1/2 activation.

View Article and Find Full Text PDF

Recent findings support a central role for TLRs in both foreign Ag-driven immune responses and systemic autoimmune diseases mediated by B lymphocytes. In vitro studies have shown that the Ag receptors (BCRs) on B cells specific for nuclear autoantigens can facilitate the delivery of these autoantigens to the endocytic compartment, resulting in activation of the nucleic acid-specific TLRs present in this subcellular locale. If this pathway is operative in vivo it might promote the development, survival, or activation of such autoreactive B cells.

View Article and Find Full Text PDF