Publications by authors named "Francis Claret"

Mineral identification and quantification are key to the understanding and, hence, the capacity to predict material properties. The method of choice for mineral quantification is powder X-ray diffraction (XRD), generally using a Rietveld refinement approach. However, a successful Rietveld refinement requires preliminary identification of the phases that make up the sample.

View Article and Find Full Text PDF

Nuclear power plays a pivotal role in ensuring a scalable, affordable, and reliable low-carbon electricity supply. Along with other low-carbon energy technologies, nuclear energy is essential for reducing our reliance on fossil fuels, addressing climate change and air pollution, and achieving a sustainable economy. Whilst significant progress has been made in reducing the volume of final radioactive waste, its management remains one of the most important challenges when considering the continued use and expansion of nuclear energy.

View Article and Find Full Text PDF

Performance assessment in deep geological nuclear waste repository systems necessitates an extended knowledge of the pore water chemical conditions prevailing in host-rock formations. In the last two decades, important progress has been made in the experimental characterization and thermodynamic modeling of pore water speciation, but the influence of experimental artifacts and uncertainties of thermodynamic input parameters are seldom evaluated. In this respect, we conducted an uncertainty propagation study in a reference geochemical model describing the pore water chemistry of the Callovian-Oxfordian clay formation.

View Article and Find Full Text PDF

Water in calcium silicate hydrate (C-S-H) is one of the key parameters driving the macroscopic behavior of cement materials for which water vapor partial pressure has an impact on Young's modulus and the volumic properties. Several samples of C-S-H with a bulk Ca/Si ratio ranging between 0.6 and 1.

View Article and Find Full Text PDF
Article Synopsis
  • Fougerite is a naturally occurring green rust and a type of layered double hydroxide containing iron, found in hydromorphic soils.
  • It has a significant capacity for anion adsorption due to iron substitutions in its structure, but the mechanisms behind this process and a thermodynamic framework are still unclear.
  • Researchers combined synchrotron X-ray experiments with geochemical modeling to demonstrate that anion exchange in green rust operates simply, allowing for predictions about its composition and its influence on soil ion geochemical cycles.
View Article and Find Full Text PDF

The evaporation of seawater in arid climates is currently the main accepted driving mechanism for the formation of ancient and recent salt deposits in shallow basins. However, the deposition of huge amounts of marine salts, including the formation of tens of metres of highly soluble types (tachyhydrite and bischofite) during the Aptian in the South Atlantic and during the Messinian Salinity Crisis, are inconsistent with the wet and warm palaeoclimate conditions reconstructed for these periods. Recently, a debate has been developed that opposes the classic model of evaporite deposition and argues for the generation of salt by serpentinization.

View Article and Find Full Text PDF

Amongst all cement phases, hydrated calcium aluminate (AFm) plays a major role in the retention of anionic species. Molybdenum (Mo), whose Mo isotope is considered a major steel activation product, will be released mainly under the form of MoO in a radioactive waste repository. Understanding its fate is of primary importance in a safety analysis of such disposal.

View Article and Find Full Text PDF

To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement's properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and . However, traditional methods of cement mineralogy analysis ( chemical mapping) involve sample preparation ( slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts ( dehydration).

View Article and Find Full Text PDF

Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO precipitation.

View Article and Find Full Text PDF

The structural evolution of nanocrystalline calcium silicate hydrate (C-S-H) as a function of its calcium to silicon (Ca/Si) ratio has been probed using qualitative and quantitative X-ray atomic pair distribution function analysis of synchrotron X-ray scattering data. Whatever the Ca/Si ratio, the C-S-H structure is similar to that of tobermorite. When the Ca/Si ratio increases from ∼0.

View Article and Find Full Text PDF

Background: In geochemically perturbed systems where porewater and mineral assemblages are unequilibrated the processes of mineral precipitation and dissolution may change important transport properties such as porosity and pore diffusion coefficients. These reactions might alter the sealing capabilities of the rock by complete pore-scale precipitation (cementation) of the system or by opening new migration pathways through mineral dissolution. In actual 1D continuum reactive transport codes the coupling of transport and porosity is generally accomplished through the empirical Archie's law.

View Article and Find Full Text PDF

This study demonstrates that the deprotonation of dissolved organic matter (DOM) originating from a small creek characteristic for DOM-rich waters located in the Rio Negro basin can be quantified based on measurements of pH effects on its absorbance spectra. The method was ascertained by the data of Near-Edge X-Ray Absorbance Spectroscopy (NEXAFS), potentiometric titration to quantify the structural and compositional differences between the colloidal and hydrophobic fractions that contribute 91% of black-water creek DOM. Changes in the absorbance spectra of the DOM fractions caused by deprotonation quantified via numeric deconvolution which indicated the presence of six well-resolved Gaussian bands in the differential spectra.

View Article and Find Full Text PDF

X-ray diffraction (XRD) patterns were calculated and compared to literature data with the aim of investigating the crystal structure of nanocrystalline calcium silicate hydrates (C-S-H), the main binding phase in hydrated Portland cement pastes. Published XRD patterns from C-S-H of Ca/Si ratios ranging from ~ 0.6 to ~ 1.

View Article and Find Full Text PDF

The aim of this work is to assess the effect of ligand strength, symmetry, and coordination number on solid solution formation of trivalent actinides and lanthanides in carbonate and sulfate minerals. This is of particular importance in radionuclide migration where trivalent actinides such as Pu, Am, and Cm are responsible for the majority of radiotoxicity after 1000 years. Time-resolved laser fluorescence spectroscopy was used to study trace concentrations of the dopant ion after interaction with the mineral phase.

View Article and Find Full Text PDF

This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles.

View Article and Find Full Text PDF

Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented.

View Article and Find Full Text PDF

Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on alpha-Al2O3 at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the nonsorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of alpha-Al2O3, seems to indicate a higher fractionation for PAHA.

View Article and Find Full Text PDF

Transmission electron microscopy (TEM), soft X-ray scanning transmission X-ray microscopy (STXM), and mu-FTIR spectromicroscopy were used to map colloidal/ particulate material in an ultra-oligotrophic lake, Lake Brienz, Switzerland, with a special focus on organic functionality. Within the statistical margin of error and the uncertainties arising from the representativeness of the results, the research reveals that organic material was associated with potassium-rich inorganic colloids present in surface and deep water (depths of 1 and 100 m, respectively), which indicates a vertical transfer of aggregates by sedimentation. Pure organic colloids could only be detected in surface waters.

View Article and Find Full Text PDF

Low-carbon-containing clay from four different depths (447 to 516 m) of the Meuse Haute Marne (MHM) site is kept in contact with alkaline solution simulating conditions expected from cement dissolution in the near-field of a nuclear waste repository. Original organic material in the clay consists mainly of aliphatic hydrophobic compounds basically without oxygen-containing functional groups. After contact with 'solid young fluid' (mimicking cement dissolution, initial pH 13.

View Article and Find Full Text PDF