Female fertility preservation via complete in vitro folliculogenesis is still chimerical. Due to many factors affecting the efficiency of isolation and culture of preantral follicles, the improvement of techniques geared to fertility preservation in higher mammals seems to be at an impasse. We need an objective view of the current stand to understand how to progress further.
View Article and Find Full Text PDFPurpose: Oocytes from women presenting primary ovarian insufficiency (POI) generate viable embryos at a lower rate than non-POI women, but the mechanisms responsible for the lower oocyte quality remain elusive. Due to the scarcity of human oocytes for research, animal models provide a promising way forward. We aimed at investigating the molecular events characterizing final maturation in POI oocytes in a well-defined POI-like bovine model.
View Article and Find Full Text PDFIn Brief: Preantral follicles constitute the largest follicle reserve in the mammalian ovary. This study assesses a mechanical isolation method to maximize the number of follicles retrieved from a defined cortex volume.
Abstract: Primordial, primary, and secondary follicles (collectively defined as preantral follicles) constitute the most abundant source of gametes inside the mammalian ovarian cortex.
The mammalian ovary is a substantial source of oocytes arranged into follicles at various stages of folliculogenesis, from the primordial to the ovulatory ones. Primordial follicles constitute the most abundant source of gametes inside the mammalian ovary at any given time.The isolation of a high number of primordial follicles, together with the development of protocols for in vitro follicle growth, would provide a powerful tool to fully exploit the female reproductive potential and boost the rescue and restoration of fertility in assisted reproduction technologies in human medicine, animal breeding, and preservation of threatened species.
View Article and Find Full Text PDFAcquisition of developmental competence is a complex process in which many cell types cooperate to support oocyte maturation, fertilisation, and preimplantation embryonic development. In recent years, compelling evidence has shown that Progesterone Receptor Membra Component 1 (PGRMC1) is expressed in many cell types of the mammalian reproductive system where it exerts diverse functions. In the ovary, PGRMC1 affects follicular growth by controlling cell viability and proliferation of granulosa cells.
View Article and Find Full Text PDFThe molecular causes of deteriorating oocyte quality during aging are poorly defined. Since oocyte developmental competence relies on post-transcriptional regulations, we tested whether defective mRNA translation contributes to this decline in quality. Disruption in ribosome loading on maternal transcripts is present in old oocytes.
View Article and Find Full Text PDFDuring mitosis, chromosome missegregation and cytokinesis defects have been recognized as hallmarks of cancer cells. Cytoskeletal elements composing the spindle and the contractile ring and their associated proteins play crucial roles in the faithful progression of mitotic cell division. The hypothesis that PGRMC1, most likely as a part of a yet-to-be-defined complex, is involved in the regulation of spindle function and, more broadly, the cytoskeletal machinery driving cell division is particularly appealing.
View Article and Find Full Text PDFIn Brief: The proposed culture system improves the current state of in vitro culture of growing oocytes in the bovine species and allows access to the untapped gamete reserve, thus improving reproductive efficiency.
Abstract: The present study aimed to improve the in vitro culture of bovine oocytes collected from early antral follicles (EAFs) to support the progressive acquisition of meiotic and developmental competence. The rationale that drove the development of such a culture system was to maintain as much as possible the physiological conditions that support the oocyte growth and differentiation in vivo.
In the past four decades, the bovine model has been highly informative and inspiring to assisted reproductive technologies (ART) in other species. Most of the recent advances in ART have come from studies in cattle, particularly those unveiling the importance of several processes that must be recapitulated in vitro to ensure the proper development of the oocyte. The maintenance of structural and functional communications between the cumulus cells and the oocyte and a well-orchestrated chromatin remodeling with the gradual silencing of transcriptional activity represent essential processes for the progressive acquisition of oocyte developmental competence.
View Article and Find Full Text PDFIn vitro maturation (IVM) has been applied in numerous different contexts and strategies in humans and animals, but in both cases it represents a challenge still far from being overcome. Despite the large dataset produced over the last two decades on the mechanisms that govern antral follicular development and oocyte metabolism and differentiation, IVM outcomes are still unsatisfactory. This review specifically focuses on data concerning the potential consequences of using supraphysiological levels of FSH during IVM, as well as on the regulation of oocyte chromatin dynamics and its utility as a potential marker of oocyte developmental competence.
View Article and Find Full Text PDFDecreased oocyte quality is a major determinant of age-associated fertility decline. Similarly, individuals affected by early ovarian aging carry low-quality oocytes. Using an established bovine model of early ovarian aging, we investigated key features of 'quality' oocyte maturation, associated with the onset of egg aneuploidy and reproductive aging, such as histone modifications, mitochondria distribution and activity, reduced glutathione (GSH) content, and gap junction functionality.
View Article and Find Full Text PDFThe mammalian ovary is a large source of oocytes organized into follicles at various stages of folliculogenesis. However, only a limited number of them can be used for in vitro embryo production (IVEP), while most have yet to complete growth and development to attain full meiotic and embryonic developmental competence. While the in vitro growth of primordial follicles in the ovarian cortex has the potential to produce mature oocytes, it is still at an experimental stage.
View Article and Find Full Text PDFObjectives: Abdominal aortic aneurysms with a wide proximal neck (>32 mm) are a contraindication for the use of conventional abdominal endovascular stent grafts because of their limited maximum proximal diameter (36 mm). In these cases, it is customary to resort to sophisticated techniques such as parallel or fenestrated grafts. In very selected cases, such as symptomatic wide neck aneurysm or patient with limited life expectancy, Funnel Technique may find an indication.
View Article and Find Full Text PDFThe limited reserve of mature, fertilizable oocytes represents a major barrier for the success of assisted reproduction in mammals. Considering that during the reproductive life span only about 1% of the oocytes in an ovary mature and ovulate, several techniques have been developed to increase the exploitation of the ovarian reserve to the growing population of non-ovulatory follicles. Such technologies have allowed interventions of fertility preservation, selection programs in livestock, and conservation of endangered species.
View Article and Find Full Text PDFIn the last years, many studies focused on the understanding of the possible role of zinc in the control of mammalian oogenesis, mainly on oocyte maturation and fertilization. However, little is known about the role of zinc at earlier stages, when the growing oocyte is actively transcribing molecules that will regulate and sustain subsequent stages of oocyte and embryonic development. In this study, we used the bovine model to gain insights into the possible involvement of zinc in oocyte development.
View Article and Find Full Text PDFSeveral studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration.
View Article and Find Full Text PDFThe efficiency of assisted reproductive technologies, consisting of the transfer of embryos obtained through maturation, fertilization and early embryo culture is still limited. The quality of the oocytes is pivotal for assisted reproductive efficiency and the maturation of the oocyte represents the first key limiting step of the embryo production system. At the time of removal from the antral follicles, the oocyte is still completing the final growth and differentiation steps, needed to provide the so-called developmental competence, i.
View Article and Find Full Text PDFInfertility affects ~7% of couples of reproductive age with little change in incidence in the last two decades. ART, as well as other interventions, have made major strides in correcting this condition. However, and in spite of advancements in the field, the age of the female partner remains a main factor for a successful outcome.
View Article and Find Full Text PDFBackground: Polycystic-ovary syndrome (PCOS) is a reproductive illness characterized by hyperandrogenism and anovulation. Using hyperandrogenized mice, it was demonstrated that the oral administration of incremental dose of follicle stimulating hormone (FSH) attenuated some of PCOS characteristics. This work aimed to study the effect of ultra-low doses of combined FSH and progesterone orally administered on PCOS murine model.
View Article and Find Full Text PDFResults Probl Cell Differ
June 2019
During growth, the oocyte accumulates mRNAs that will be required in the later stages of oogenesis and early embryogenesis until the activation of the embryonic genome. Each of these developmental stages is controlled by multiple regulatory mechanisms that ensure proper protein production. Thus mRNAs are stabilized, stored, recruited, polyadenylated, translated and/or degraded over a period of several days.
View Article and Find Full Text PDFThe field of assisted reproduction has been developed to treat infertility in women, companion animals, and endangered species. In the horse, assisted reproduction also allows for the production of embryos from high performers without interrupting their sports career and contributes to an increase in the number of foals from mares of high genetic value. The present manuscript describes the procedures used for collecting immature and mature oocytes from horse ovaries using ovum pick-up (OPU).
View Article and Find Full Text PDFProgesterone Receptor Membrane Component 1 (PGRMC1) is expressed in both oocyte and ovarian somatic cells, where it is found in multiple cellular sub-compartments including the mitotic spindle apparatus. PGRMC1 localization in the maturing bovine oocytes mirrors its localization in mitotic cells, suggesting a possible common action in mitosis and meiosis. To test the hypothesis that altering PGRMC1 activity leads to similar defects in mitosis and meiosis, PGRMC1 function was perturbed in cultured bovine granulosa cells (bGC) and maturing oocytes and the effect on mitotic and meiotic progression assessed.
View Article and Find Full Text PDF