Publications by authors named "Francine C A Gerard"

The dynamic interplay between a multimeric phosphoprotein (P) and polymeric nucleoprotein (N) in complex with the viral RNA is at the heart of the functioning of the RNA-synthesizing machine of negative-sense RNA viruses of the order . P multimerization and N phosphorylation are often cited as key factors in regulating these interactions, but a detailed understanding of the molecular mechanisms is not yet available. Working with recombinant rabies virus (RABV) N and P proteins and using mainly surface plasmon resonance, we measured the binding interactions of full-length P dimers and of two monomeric fragments of either circular or linear N-RNA complexes, and we analyzed the equilibrium binding isotherms using different models.

View Article and Find Full Text PDF

The cell nucleus is a primary target for intracellular bacterial pathogens to counteract immune responses and hijack host signalling pathways to cause disease. Here we identify two Brucella abortus effectors, NyxA and NyxB, that interfere with host protease SENP3, and this facilitates intracellular replication of the pathogen. The translocated Nyx effectors directly interact with SENP3 via a defined acidic patch (identified from the crystal structure of NyxB), preventing nucleolar localisation of SENP3 at late stages of infection.

View Article and Find Full Text PDF

As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (N), and a peptide encompassing the N chaperon module of the P protein.

View Article and Find Full Text PDF

Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection.

View Article and Find Full Text PDF

Influenza viruses are negative single-stranded RNA viruses with nuclear transcription and replication. They enter the nucleus by using the cellular importin-α/-β nuclear import machinery. Influenza nucleoproteins from influenza A, B, C and D viruses possess a nuclear localization signal (NLS) localized on an intrinsically disordered extremity (NP).

View Article and Find Full Text PDF

The phosphoprotein (P) of the nonsegmented negative-sense RNA viruses is a multimeric modular protein that is essential for RNA transcription and replication. Despite great variability in length and sequence, the architecture of this protein is conserved among the different viral families, with a long N-terminal intrinsically disordered region comprising a nucleoprotein chaperone module, a central multimerization domain (P), connected by a disordered linker to a C-terminal nucleocapsid-binding domain. The P protein of vesicular stomatitis virus (VSV) forms dimers, and here we investigate the importance of its dimerization domain, P, for viral gene expression and virus growth.

View Article and Find Full Text PDF

This paper focuses on the nucleoprotein (NP) of the newly identified member of the Orthomyxoviridae family, Influenza D virus. To date several X-ray structures of NP of Influenza A (A/NP) and B (B/NP) viruses and of infectious salmon anemia (ISA/NP) virus have been solved. Here we purified, characterized and solved the X-ray structure of the tetrameric D/NP at 2.

View Article and Find Full Text PDF

HIV viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/replication stress signalling pathway through engagement of the DDB1-CUL4A-DCAF1 E3 ubiquitin ligase via a direct binding to the substrate specificity receptor DCAF1. Since no high resolution structures of the DDB1-DCAF1-Vpr substrate recognition module currently exist, we used a mutagenesis approach to better define motifs in DCAF1 that are crucial for Vpr and DDB1 binding. Herein, we show that the minimal domain of DCAF1 that retained the ability to bind Vpr and DDB1 was mapped to residues 1041 to 1393 (DCAF1 WD).

View Article and Find Full Text PDF

The phosphoprotein (P) is an essential component of the viral replication machinery of non-segmented negative-strand RNA viruses, connecting the viral polymerase to its nucleoprotein-RNA template and acting as a chaperone of the nucleoprotein by preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of vesicular stomatitis virus (VSV) forms homodimers and possesses a modular organization comprising two stable, well-structured domains concatenated with two intrinsically disordered regions. Here, we used a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering to depict VSV P as an ensemble of continuously exchanging conformers that captures the dynamic character of this protein.

View Article and Find Full Text PDF

HIV-1 viral protein R (Vpr) from laboratory-adapted virus strains activates the DNA damage/stress sensor ATR kinase and induces cell cycle arrest at the G(2)/M phase through a process that requires Vpr to engage the DDB1-CUL4A (VprBP/DCAF-1) E3 ligase complex. Activation of this DNA damage/stress checkpoint in G(2) by Vpr was shown to modulate NKG2D-dependent NK cell effector functions via enhancing expression of NKG2D ligands, notably ULBP2. However, it is unknown whether Vpr from HIV-1 primary isolates (groups M, N, O, and P) could modulate NKG2D-mediated cytotoxic functions of NK cells.

View Article and Find Full Text PDF

The phosphoprotein (P) of vesicular stomatitis virus (VSV) interacts with nascent nucleoprotein (N), forming the N(0)-P complex that is indispensable for the correct encapsidation of newly synthesized viral RNA genome. In this complex, the N-terminal region (P(NTR)) of P prevents N from binding to cellular RNA and keeps it available for encapsidating viral RNA genomes. Here, using nuclear magnetic resonance (NMR) spectroscopy and small-angle X-ray scattering (SAXS), we show that an isolated peptide corresponding to the 60 first N-terminal residues of VSV P (P(60)) and encompassing P(NTR) has overall molecular dimensions and a dynamic behavior characteristic of a disordered protein but transiently populates conformers containing α-helices.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 Vpr protein causes a pause in the cell cycle at the G2/M phase by activating the ATR DNA damage response, utilizing the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase complex for this process.
  • * Vpr forms nuclear foci in cells like HeLa and CD4+ T-lymphocytes, which overlap with components involved in DNA repair, indicating a connection between Vpr activity and DNA damage responses.
  • * Mutations in Vpr affect the formation of these nuclear foci and G2 arrest, suggesting the importance of these mobile structures for the induction of DNA damage responses and subsequent cell cycle regulation.*
View Article and Find Full Text PDF
Article Synopsis
  • Rhabdoviridae are negative sense RNA viruses that rely on specific proteins (N, P, and L) for their transcription and replication processes.
  • The proteins N and P have flexible regions, known as intrinsically disordered regions (IDRs), which play important roles in the virus's life cycle and its ability to attach to RNA.
  • The text presents a new model for how the large subunit (L) interacts with the N-RNA template, focusing on the flexible loops in N that help facilitate this attachment through an induced-fit mechanism.
View Article and Find Full Text PDF

In rabies virus, the attachment of the L polymerase (L) to the viral nucleocapsids (NCs)-a nucleoprotein (N)-RNA complex that serves as template for RNA transcription and replication-is mediated by the polymerase cofactor, the phosphoprotein (P). P forms dimers (P(2)) that bind through their C-terminal domains (P(CTD)) to the C-terminal region of the N. Recombinant circular N(m)-RNA complexes containing 9 to 12 protomers of N (hereafter, the subscript m denotes the number of N protomers) served here as model systems for studying the binding of P to NC-like N(m)-RNA complexes.

View Article and Find Full Text PDF

A phosphoprotein (P) is found in all viruses of the Mononegavirales order. These proteins form homo-oligomers, fulfil similar roles in the replication cycles of the various viruses, but differ in their length and oligomerization state. Sequence alignments reveal no sequence similarity among proteins from viruses belonging to the same family.

View Article and Find Full Text PDF

Beyond common features in their genome organization and replication mechanisms, the evolutionary relationships among viruses of the Rhabdoviridae family are difficult to decipher because of the great variability in the amino acid sequence of their proteins. The phosphoprotein (P) of vesicular stomatitis virus (VSV) is an essential component of the RNA transcription and replication machinery; in particular, it contains binding sites for the RNA-dependent RNA polymerase and for the nucleoprotein. Here, we devised a new method for defining boundaries of structured domains from multiple disorder prediction algorithms, and we identified an autonomous folding C-terminal domain in VSV P (P(CTD)).

View Article and Find Full Text PDF
Article Synopsis
  • The phosphoprotein (P) is crucial for the replication of rabies virus (RV) and vesicular stomatitis virus (VSV), and its oligomerization, potentially modulated by phosphorylation, is vital for its functionality.
  • Recent studies using size exclusion chromatography and multiangle laser light scattering demonstrate that both unphosphorylated VSV and RV phosphoproteins primarily exist as dimers in solution, which are asymmetric and have specific hydrodynamic properties.
  • Further experiments show that a mutant form of VSV phosphoprotein, designed to mimic phosphorylation, also forms a dimer with similar characteristics, but prolonged incubation at elevated temperatures can lead to the formation of irregular filamentous structures for both wild type and mutant proteins
View Article and Find Full Text PDF