We consider nested or multiscale models to study the effect of the temporal evolution of the disease within the host in the population dynamics of the disease, for one and two infectious agents. We assumed a coupling between the within-host infection rate and the between-host transmission rate. The age of infection within each individual in a population affects the probability of transmission of the disease to a susceptible host and this will affect the temporal evolution of the disease in the host population.
View Article and Find Full Text PDFBackground: Evidence of changing in biting and resting behaviour of the main malaria vectors has been mounting up in recent years as a result of selective pressure by the widespread and long-term use of insecticide-treated bed nets (ITNs), and indoor residual spraying. The impact of resistance behaviour on malaria intervention efficacy has important implications for the epidemiology and malaria control programmes. In this context, a theoretical framework is presented to understand the mechanisms determining the evolution of feeding behaviour under the pressure of use of ITNs.
View Article and Find Full Text PDFHabitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally.
View Article and Find Full Text PDF