Publications by authors named "Franchino C"

Glyphosate (Gly) is a broad-spectrum herbicide responsible for the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase known to be expressed exclusively in plants and not in animals. For decades Gly has been thought to be ineffective in mammals, including humans, until it was demonstrated that rodents treated with the Gly-based herbicide Roundup showed reduced content of neurotransmitters (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • * Research indicates that the synthetic compound Trofinetide and nerve growth factor (rhNGF) may provide therapeutic benefits, as seen in both cell cultures and in vivo studies with mice lacking MECP2.
  • * Positive results from treatments with rhNGF showed improved cognitive and motor abilities in both male and female mouse models of Rett syndrome, with further analysis planned to explore underlying molecular mechanisms.
View Article and Find Full Text PDF

Mycotoxin contamination of animal feed is a complex issue in both animal wellness and food safety. The most diffused mycotoxins subject to the official control of animal feed are Aflatoxin B1 (AF), Zearalenone (ZEA), Deoxynivalenol (DON), Ochratoxin A (OCRA), Fumonisins (FUMO), and T-2/HT-2 toxins. This work describes the results of five years of monitoring focused on the evaluation of mycotoxin contamination of animal feed.

View Article and Find Full Text PDF

MicroGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) can be successfully used to reveal, in real time, quantal exocytotic events occurring from many individual neurosecretory cells and/or from many neurons within a network. As μG-D-MEAs arrays are patterned with up to 16 sensing microelectrodes, each of them recording large amounts of data revealing the exocytotic activity, the aim of this work was to support an adequate analysis code to speed up the signal detection. The cutting-edge technology of microGraphited-Diamond-Multi Electrode Arrays (μG-D-MEAs) has been implemented with an automated analysis code (APE, Amperometric Peak Analysis) developed using Matlab R2022a software to provide easy and accurate detection of amperometric spike parameters, including the analysis of the pre-spike foot that sometimes precedes the complete fusion pore dilatation.

View Article and Find Full Text PDF

AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane. Heterozygous AFG3L2 mutations cause spinocerebellar ataxia type 28 (SCA28) or dominant optic atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe spastic ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia and myoclonic epilepsy.

View Article and Find Full Text PDF

The aim of this work was to monitor the effects of extracellular α-synuclein on the firing activity of midbrain neurons dissociated from substantia nigra TH-GFP mice embryos and cultured on microelectrode arrays (MEA). We monitored the spontaneous firing discharge of the network for 21 days after plating and the role of glutamatergic and GABAergic inputs in regulating burst generation and network synchronism. Addition of GABA , AMPA and NMDA antagonists did not suppress the spontaneous activity but allowed to identify three types of neurons that exhibited different modalities of firing and response to applied L-DOPA: high-rate (HR) neurons, low-rate pacemaking (LR-p), and low-rate non-pacemaking (LR-np) neurons.

View Article and Find Full Text PDF

The oligomeric form of the peptide amyloid beta 42 (Abeta42) contributes to the development of synaptic abnormalities and cognitive impairments associated with Alzheimer's disease (AD). To date, there is a gap in knowledge regarding how Abeta42 alters the elementary parameters of GABAergic synaptic function. Here we found that Abeta42 increased the frequency and amplitude of miniature GABAergic currents as well as the amplitude of evoked inhibitory postsynaptic currents.

View Article and Find Full Text PDF

We recorded spontaneous extracellular action potentials (eAPs) from rat chromaffin cells (CCs) at 37 °C using microelectrode arrays (MEAs) and compared them with intracellularly recorded APs (iAPs) through conventional patch clamp recordings at 22 °C. We show the existence of two distinct firing modes on MEAs: a ~ 4 Hz irregular continuous firing and a frequent intermittent firing mode where periods of high-intraburst frequency (~ 8 Hz) of ~ 7 s duration are interrupted by silent periods of ~ 12 s. eAPs occurred either as negative- or positive-going signals depending on the contact between cell and microelectrode: either predominantly controlled by junction-membrane ion channels (negative-going) or capacitive/ohmic coupling (positive-going).

View Article and Find Full Text PDF

Diamond-based multiarray sensors are suitable to detect in real-time exocytosis and action potentials from cultured, spontaneously firing chromaffin cells, primary hippocampal neurons, and midbrain dopaminergic neurons. Here, we focus on how amperometric measurements of catecholamine release are performed on micrographitic diamond multiarrays (μG-D-MEAs) with high temporal and spatial resolution by 16 electrodes simultaneously.

View Article and Find Full Text PDF

Neuroinflammation is involved in the pathogenesis of Alzheimer's disease, and the transcription factor NF-κB is a player in this event. We found here that the ischemic damage alone or in association with Aβ1-42 activates the NF-κB pathway, induces an increase of BACE1 and a parallel inhibition of Uch-L1 and TREM2, both in vitro and in vivo, in Tg 5XFAD and in human brains of sporadic AD. This mechanism creates a synergistic loop that fosters inflammation.

View Article and Find Full Text PDF

Micro graphitic - diamond - multi electrode arrays (μG-D-MEAs) are suitable for measuring multisite quantal dopamine (DA) release from PC12 cells. Following cell stimulation with high extracellular KCl and electrode polarization at +650 mV, amperometric spikes are detected with a mean frequency of 0.60 ± 0.

View Article and Find Full Text PDF

Background: Salix caprea L. is an ornamental plant with prominent antioxidant activity. In the last decades Salix caprea bud extracts (SCBEs) have been used for the treatment of oxidative stress related disorders.

View Article and Find Full Text PDF

We studied the effect of Amyloid β 1-42 oligomers (Abeta42) on Ca2+ dependent excitability profile of hippocampal neurons. Abeta42 is one of the Amyloid beta peptides produced by the proteolytic processing of the amyloid precursor protein and participates in the initiating event triggering the progressive dismantling of synapses and neuronal circuits. Our experiments on cultured hippocampal network reveal that Abeta42 increases intracellular Ca2+ concentration by 46% and inhibits firing discharge by 19%.

View Article and Find Full Text PDF

During a 5-year period from 2010 to 2014, n = 919 samples of feed and raw materials were analyzed for aflatoxin B (AFB) contamination using accredited ELISA screening methods. Only 0.76 % of these samples were non-compliant with maximum levels set by the European Union Regulation 32/2002.

View Article and Find Full Text PDF

The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins, and these toxins are designed to target in humans specific organs on which they act. When introduced into the soil ecosystem by spray irrigation of crops, they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells, or biomolecules. There are also several indications that terrestrial plants, including crops, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for humans.

View Article and Find Full Text PDF

We report on the ion beam fabrication of all-carbon multi electrode arrays (MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond (SCD) substrates. The fabricated SCD-MEAs are systematically employed for the in vitro simultaneous amperometric detection of the secretory activity from populations of chromaffin cells, demonstrating a new sensing approach with respect to standard techniques. The biochemical stability and biocompatibility of the SCD-based device combined with the parallel recording of multi-electrodes array allow: i) a significant time saving in data collection during drug screening and/or pharmacological tests over a large number of cells, ii) the possibility of comparing altered cell functionality among cell populations, and iii) the repeatition of acquisition runs over many cycles with a fully non-toxic and chemically robust bio-sensitive substrate.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Tilia tomentosa Moench bud extracts (TTBEs) is used in traditional medicine for centuries as sedative compound. Different plants belonging to the Tilia genus have shown their efficacy in the treatment of anxiety but still little is known about the mechanism of action of their bud extracts.

Aim Of The Study: To evaluate the action of TTBEs as anxiolytic and sedative compound on in vitro hippocampal neurons.

View Article and Find Full Text PDF

Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration.

View Article and Find Full Text PDF

Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV).

View Article and Find Full Text PDF

Semiconductor nanocrystal quantum dots (QDs) possess an enormous potential of applications in nanomedicine, drug delivery and bioimaging which derives from their unique photoemission and photostability characteristics. In spite of this, however, their interactions with biological systems and impact on human health are still largely unknown. Here we used neurosecretory mouse chromaffin cells of the adrenal gland for testing the effects of CdSe-ZnS core-shell quantum dots (5-36 nM) on Ca(2+) channels functionality and Ca(2+)-dependent neurosecretion.

View Article and Find Full Text PDF

The human neuroblastoma cell line SK-N-BE, after incubation with 10 microM retinoic acid (RA) or 20 nM phorbol 12-myristate 13-acetate (PMA), underwent biochemical and morphological signs of differentiation within 10-14 days. In parallel, SK-N-BE cells produced significantly higher amounts of nitric oxide (NO) in comparison with controls, as assessed by the measurement of nitrite and nitrate in the culture supernatant and of NO synthase (NOS) activity in the cell lysates (measured as ability to convert [3H]arginine into [3H]citrulline and as NADPH diaphorase activity). Nitrite/nitrate production was abolished by adding the NO scavenger hemoglobin in the culture medium and was inhibited by aminoguanidine (AG, a selective inhibitor of the inducible NOS isoform) but not by the less selective inhibitor NG-nitro-L-arginine methylester (NAME).

View Article and Find Full Text PDF

We have recently shown that fasting before initiation markedly stimulated the growth of aberrant crypt foci (ACF) induced by azoxymethane (AOM) in the rat medial colon. Here we investigated the mechanisms by which fasting enhanced the growth of ACF. Rats were exposed to 4 day-starvation, then they were given AOM (20 mg/kg) on the first day of refeeding.

View Article and Find Full Text PDF