Publications by authors named "Francesco di Giorgio"

A pharmacokinetic/pharmacodynamic (PK/PD) model was developed to describe the time course of writhings after intraperitoneal injection of acetic acid in mice. The model was applied to investigate the antinociceptive effect of trazodone and gabapentin alone and in combination. Writhings time course was described by a transit compartment model with the delay due to the transit of the acetic acid being represented by a chain of intermediate compartments.

View Article and Find Full Text PDF

Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.

View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK3) is a proline-directed serine-threonine kinase that is associated with several neurological disorders, including Alzheimer's disease and fragile X syndrome (FXS). We tested the efficacy of a novel GSK3 inhibitor AFC03127, which was developed by Angelini Pharma, in comparison to the metabotropic glutamate receptor 5 inhibitor 2-Methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the GSK3 inhibitor SB216763 in and assays in mice, a mouse model useful for the study of FXS. The assay tested susceptibility to audiogenic-induced seizures (AGS) whereas the assays assessed biomarker expression and dendritic spine length and density in cultured primary neurons as a function of drug dose.

View Article and Find Full Text PDF

Glycogen-synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as fragile X syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development.

View Article and Find Full Text PDF

The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments.

View Article and Find Full Text PDF

Neuropathic pain is a chronic debilitating condition caused by injury or disease of the nerves of the somatosensory system. Although several therapeutic approaches are recommended, none has emerged as an optimal treatment leaving a need for developing more effective therapies. Given the small number of approved drugs and their limited clinical efficacy, combining drugs with different mechanisms of action is frequently used to yield greater efficacy.

View Article and Find Full Text PDF

We investigated whether chronic sciatic ligation modifies the glutamate release in spinal cord nerve endings (synaptosomes) as well as the expression and the function of presynaptic release-regulating mGlu2/3 autoreceptors and 5-HT heteroreceptors in these particles. Synaptosomes were from the spinal cord of animals suffering from the sciatic ligation that developed on day 6 post-surgery a significant decrease of the force inducing paw-withdrawal in the lesioned paw. The exocytosis of glutamate (quantified as release of preloaded [H]D-aspartate, [H]D-Asp) elicited by a mild depolarizing stimulus (15 mM KCl) was significantly increased in synaptosomes from injured rats when compared to controls (uninjured rats).

View Article and Find Full Text PDF

Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good efficacy and safety profile associated with high brain exposure is required.

View Article and Find Full Text PDF

In this study, a drug discovery programme that sought to identify novel dual bacterial topoisomerase II inhibitors (NBTIs) led to the selection of six optimized compounds. In enzymatic assays, the molecules showed equivalent dual-targeting activity against the DNA gyrase and topoisomerase IV enzymes of Staphylococcus aureus and Escherichia coli. Consistently, the compounds demonstrated potent activity in susceptibility tests against various Gram-positive and Gram-negative reference species, including ciprofloxacin-resistant strains.

View Article and Find Full Text PDF

Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of biofilm-related infections and represent the most common cause of osteomyelitis and biomedical implants infections. Biofilm-related infections usually require long-term antibiotic treatment, often associated to surgical interventions. Dalbavancin is a newer lipoglycopeptide approved for the treatment of acute skin and skin-structure infections caused by Gram-positive pathogens.

View Article and Find Full Text PDF

Bacterial resistance is increasing rapidly, requiring urgent identification of new antibacterial drugs that are effective against multidrug-resistant pathogens. Novel bacterial topoisomerase inhibitors (NBTIs) provide a new strategy for investigating the well-validated DNA gyrase and topoisomerase IV targets while preventing cross-resistance issues. On this basis, starting from a virtual screening campaign and subsequent structure-based hit optimization guided by X-ray studies, a novel class of piperazine-like NBTIs with outstanding enzymatic activity against and DNA gyrase and topoisomerase IV was identified.

View Article and Find Full Text PDF

The drug/proton antiporter AcrB, which is part of the major efflux pump AcrABZ-TolC in Escherichia coli, is the paradigm transporter of the resistance-nodulation-cell division (RND) superfamily. Despite the impressive ability of AcrB to transport many chemically unrelated compounds, only a few of these ligands have been co-crystallized with the protein. Therefore, the molecular features that distinguish good substrates of the pump from poor ones have remained poorly understood to date.

View Article and Find Full Text PDF

In the version of this article initially published, the catalog numbers for BoNT A and B were given in the Methods section as T0195 and T5644; the correct numbers are B8776 and B6403. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Presynaptic mGlu2/3 autoreceptors exist in rat spinal cord nerve terminals as suggested by the finding that LY379268 inhibited the 15 mM KCl-evoked release of [H]D-aspartate ([H]D-Asp) in a LY341495-sensitive manner. Spinal cord glutamatergic nerve terminals also possess presynaptic release-regulating 5-HT heteroreceptors. Actually, the 15 mM KCl-evoked [H]D-Asp exocytosis from spinal cord synaptosomes was reduced by the 5-HT agonist (±)DOI, an effect reversed by the 5-HT antagonists MDL11,939, MDL100907, ketanserin and trazodone (TZD).

View Article and Find Full Text PDF

In fragile X syndrome (FXS), CGG repeat expansion greater than 200 triplets is believed to trigger FMR1 gene silencing and disease etiology. However, FXS siblings have been identified with more than 200 CGGs, termed unmethylated full mutation (UFM) carriers, without gene silencing and disease symptoms. Here, we show that hypomethylation of the FMR1 promoter is maintained in induced pluripotent stem cells (iPSCs) derived from two UFM individuals.

View Article and Find Full Text PDF

In Huntington's disease (HD), whether transneuronal spreading of mutant huntingtin (mHTT) occurs and its contribution to non-cell autonomous damage in brain networks is largely unknown. We found mHTT spreading in three different neural network models: human neurons integrated in the neural network of organotypic brain slices of HD mouse model, an ex vivo corticostriatal slice model and the corticostriatal pathway in vivo. Transneuronal propagation of mHTT was blocked by two different botulinum neurotoxins, each known for specifically inactivating a single critical component of the synaptic vesicle fusion machinery.

View Article and Find Full Text PDF
Article Synopsis
  • Human pluripotent stem cells (hPSCs) can be differentiated to generate specific neurons, particularly from the hippocampal dentate gyrus (DG), useful for studying brain diseases.
  • The differentiation protocol mirrors key gene expression patterns and neuron maturation, producing neurons that can integrate functionally into the DG.
  • When applied to stem cells from schizophrenia patients, the protocol revealed deficits in generating DG neurons, suggesting neurodevelopmental issues in schizophrenia and potential applications for drug screening and personalized treatments.
View Article and Find Full Text PDF

Background: Hypermethylation of the fragile X mental retardation 1 gene FMR1 results in decreased expression of FMR1 protein FMRP, which is the underlying cause of Fragile X syndrome - an incurable neurological disorder characterized by mental retardation, anxiety, epileptic episodes and autism. Disease-modifying therapies for Fragile X syndrome are thus aimed at treatments that increase the FMRP expression levels in the brain. We describe the development and characterization of two assays for simple and quantitative detection of FMRP protein.

View Article and Find Full Text PDF

The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity.

View Article and Find Full Text PDF

It has been proposed that human embryonic stem cells could be used to provide an inexhaustible supply of differentiated cell types for the study of disease processes. Although methods for differentiating embryonic stem cells into specific cell types have become increasingly sophisticated, the utility of the resulting cells for modeling disease has not been determined. We have asked whether specific neuronal subtypes produced from human embryonic stem cells can be used to investigate the mechanisms leading to neural degeneration in amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

The demonstration that the small synthetic molecule reversine [2-(4-morpholinoanilino)-N6-cyclohexyladenine] promotes the dedifferentiation of committed cells into multipotent progenitor-type cells has raised hopes on the exploitation of this small chemical tool for the generation of stem cells. Here, we show that reversine causes a failure in cytokinesis and induces polyploidization. These effects of reversine are due to the inhibition of Aurora A and B, two related kinases that are implicated in several aspects of mitosis and that are frequently amplified and overexpressed in human tumors.

View Article and Find Full Text PDF

Here we report an in vitro model system for studying the molecular and cellular mechanisms that underlie the neurodegenerative disease amyotrophic lateral sclerosis (ALS). Embryonic stem cells (ESCs) derived from mice carrying normal or mutant transgenic alleles of the human SOD1 gene were used to generate motor neurons by in vitro differentiation. These motor neurons could be maintained in long-term coculture either with additional cells that arose during differentiation or with primary glial cells.

View Article and Find Full Text PDF

In an effort to make transgenesis more flexible and reproducible, we developed a system based on novel 5' and 3' 'gene trap' vectors containing heterospecific Flp recognition target sites and the corresponding 'exchange' vectors allowing the insertion of any DNA sequence of interest into the trapped locus. Flp-recombinase-mediated cassette exchange was demonstrated to be highly efficient in our system, even in the absence of locus-specific selection. The feasibility of constructing a library of ES cell clones using our gene trap vectors was tested and a thousand insertion sites were characterized, following electroporation in ES cells, by RACE-PCR and sequencing.

View Article and Find Full Text PDF

Inositide-specific phospholipase C (PLC) signaling constitutes a central intermediate in a number of cellular functions among which the control of cell growth raises a particular interest. Indeed, we have previously shown that nuclear phospholipase C beta1 (PLC beta1) is central for the regulation of mitogen-induced cell growth. We have also assigned by fluorescence in situ hybridization (FISH) analysis the PLC beta1 to human chromosome 20p12.

View Article and Find Full Text PDF