We study out-of-thermodynamic-equilibrium effects in neutron-star mergers with 3D general-relativistic neutrino-radiation large-eddy simulations. During mergers, the cores of the neutron stars remain cold (T∼ a few MeV) and out of thermodynamic equilibrium with trapped neutrinos originating from the hot collisional interface between the stars. However, within ∼2 to 3 ms matter and neutrinos reach equilibrium everywhere in the remnant massive neutron star.
View Article and Find Full Text PDFObservations of gravitational waves and their electromagnetic counterparts may soon uncover the existence of coalescing compact binary systems formed by a stellar-mass black hole and a neutron star. These mergers result in a remnant black hole, possibly surrounded by an accretion disk. The mass and spin of the remnant black hole depend on the properties of the coalescing binary.
View Article and Find Full Text PDFWe study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities.
View Article and Find Full Text PDFBackground: The SAKK 19/05 trial investigated the safety and efficacy of the combined targeted therapy bevacizumab and erlotinib (BE) in unselected patients with advanced non-squamous non-small cell lung cancer (NSCLC). Although activating EGFR mutations were the strongest predictors of the response to BE, some patients not harboring driver mutations could benefit from the combined therapy. The identification of predictive biomarkers before or short after initiation of therapy is therefore paramount for proper patient selection, especially among EGFR wild-types.
View Article and Find Full Text PDFLung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens.
View Article and Find Full Text PDFAlternative splicing is an important component of tumorigenesis. Recent advent of exon array technology enables the detection of alternative splicing at a genome-wide scale. The analysis of high-throughput alternative splicing is not yet standard and methodological developments are still needed.
View Article and Find Full Text PDFIntroduction: In lung adenocarcinoma (ADC), anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangements are mutually exclusive with epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. However, the existence of double-positive (DP) patients have been sporadically described. We identified DP cases in therapy-naive ALK-rearranged ADC and characterized the biology of these tumors to better understand the clinical response to tyrosine kinase inhibitors (TKIs).
View Article and Find Full Text PDFPurpose: We aimed to identify gene expression signatures associated with angiogenesis and hypoxia pathways with predictive value for treatment response to bevacizumab/erlotinib (BE) of nonsquamous advanced non-small cell lung cancer (NSCLC) patients.
Experimental Design: Whole-genome gene expression profiling was performed on 42 biopsy samples (from SAKK 19/05 trial) using Affymetrix exon arrays, and associations with the following endpoints: time-to-progression (TTP) under therapy, tumor-shrinkage (TS), and overall survival (OS) were investigated. Next, we performed gene set enrichment analyses using genes associated with the angiogenic process and hypoxia response to evaluate their predictive value for patients' outcome.
Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results.
View Article and Find Full Text PDFBackground: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line.
Patients And Methods: Patients were pooled from two phase II trials (SAKK19/05 and NTR528).
Purpose: This phase II trial aimed to evaluate feasibility and efficacy of a first-line combination of targeted therapies for advanced non-squamous NSCLC: bevacizumab (B) and erlotinib (E), followed by platinum-based CT at disease progression (PD).
Methods: 103 patients with advanced non-squamous NSCLC were treated with B (15 mg/kg day 1 of each 21-day cycle) and E (150 mg daily) until PD or unacceptable toxicity. Upon PD patients received 6 cycles of CT (cisplatin/carboplatin and gemcitabine).
NAD(P)H:quinone oxidoreductase 1 (NQO1; DT-diaphorase; DTD) is a cytosolic two-electron reductase, and compounds of the quinone family such as mitomycin C are efficiently bioactivated by this enzyme. The observation that DT-diaphorase is highly expressed in many cancerous tissues compared to normal tissues has provided us with a potentially selective target that can be exploited in the design of novel anticancer agents. Because of the relative lack of information about the cell-specific expression of DT-diaphorase, the purpose of this study was to map the distribution of this enzyme in normal human tissues.
View Article and Find Full Text PDF