With the increasing popularity of machine learning (ML) applications, the demand for explainable artificial intelligence techniques to explain ML models developed for computational chemistry has also emerged. In this study, we present the development of the Boltzmann-weighted cumulative integrated gradients (BCIG) approach for effective explanation of mechanistic insights into ML models trained on high-level quantum mechanical and molecular mechanical (QM/MM) minimum energy pathways. Using the acylation reactions of the Toho-1 β-lactamase and two antibiotics (ampicillin and cefalexin) as the model systems, we show that the BCIG approach could quantitatively attribute the energetic contribution in one system and the relative reactivity of individual steps across different systems to specific chemical processes such as the bond making/breaking and proton transfers.
View Article and Find Full Text PDFThe Angiotensin Converting Enzyme 2 (ACE2) assists the regulation of blood pressure and is the main target of the coronaviruses responsible for SARS and COVID19. The catalytic function of ACE2 relies on the opening and closing motion of its peptidase domain (PD). In this study, we investigated the possibility of allosterically controlling the ACE2 PD functional dynamics.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2021
The Light-Oxygen-Voltage 2 (LOV2) domain of phototropin 1 (LOV2) protein is one of the most studied domains in the field of designing photoswitches. This is due to the several unique features in the LOV2, such as the monomeric structure of the protein in both light and dark states and the relatively short transition time between the two states. Despite that, not many studies focus on the effect of the secondary structures on the drastic conformational change between the light and dark states.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations have been actively used in the study of protein structure and function. However, extensive sampling in the protein conformational space requires large computational resources and takes a prohibitive amount of time. In this study, we demonstrated that variational autoencoders (VAEs), a type of deep learning model, can be employed to explore the conformational space of a protein through MD simulations.
View Article and Find Full Text PDFEfficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin.
View Article and Find Full Text PDFIn Arabidopsis thaliana, the Light-Oxygen-Voltage (LOV) domain containing protein ZEITLUPE (ZTL) integrates light quality, intensity, and duration into regulation of the circadian clock. Recent structural and biochemical studies of ZTL indicate that the protein diverges from other members of the LOV superfamily in its allosteric mechanism, and that the divergent allosteric mechanism hinges upon conservation of two signaling residues G46 and V48 that alter dynamic motions of a Gln residue implicated in signal transduction in all LOV proteins. Here, we delineate the allosteric mechanism of ZTL via an integrated computational approach that employs atomistic simulations of wild type and allosteric variants of ZTL in the functional dark and light states, together with Markov state and supervised machine learning classification models.
View Article and Find Full Text PDFProteins are the molecular machines of life. The multitude of possible conformations that proteins can adopt determines their free-energy landscapes. However, the inherently high dimensionality of a protein free-energy landscape poses a challenge to deciphering how proteins perform their functions.
View Article and Find Full Text PDFComputational prediction of Protein-Ligand Interaction (PLI) is an important step in the modern drug discovery pipeline as it mitigates the cost, time, and resources required to screen novel therapeutics. Deep Neural Networks (DNN) have recently shown excellent performance in PLI prediction. However, the performance is highly dependent on protein and ligand features utilized for the DNN model.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale. A concerted effort from research labs around the world resulted in the identification of potential pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and cross-discipline cooperation, together with an enhanced open-access research model to distribute new ideas and leads.
View Article and Find Full Text PDFThe conformational-driven allosteric protein diatom aureochrome 1a (PtAu1a) differs from other light-oxygen-voltage (LOV) proteins for its uncommon structural topology. The mechanism of signaling transduction in the PtAu1a LOV domain (AuLOV) including flanking helices remains unclear because of this dissimilarity, which hinders the study of PtAu1a as an optogenetic tool. To clarify this mechanism, we employed a combination of tree-based machine learning models, Markov state models, machine-learning-based community analysis, and transition path theory to quantitatively analyze the allosteric process.
View Article and Find Full Text PDF