Publications by authors named "Francesco Sylos Labini"

SARS-CoV-2 is currently causing hundreds of deaths every day in European countries, mostly in not yet vaccinated elderly. Vaccine shortage poses relevant challenges to health authorities, called to act promptly with a scarcity of data. We modeled the mortality reduction of the elderly according to a schedule of mRNA SARS-CoV-2 vaccine that prioritized first dose administration.

View Article and Find Full Text PDF

By means of simple dynamical experiments we study the combined effect of gravitational and gas dynamics in the evolution of an initially out-of-equilibrium, uniform, and rotating massive overdensity thought of as in isolation. The rapid variation of the system mean-field potential makes the pointlike particles (PPs), which interact only via Newtonian gravity, form a quasistationary thick disk dominated by rotational motions surrounded by far out-of-equilibrium spiral arms. On the other side, the gas component is subjected to compression shocks and radiative cooling so as to develop a much flatter disk, where rotational motions are coherent and the velocity dispersion is smaller than that of PPs.

View Article and Find Full Text PDF

The evolution of self-gravitating systems, and long-range interacting systems more generally, from initial configurations far from dynamical equilibrium is often described as a simple two-phase process: a first phase of violent relaxation bringing it to a quasistationary state in a few dynamical times, followed by a slow adiabatic evolution driven by collisional processes. In this context the complex spatial structure evident, for example, in spiral galaxies is understood either in terms of instabilities of quasistationary states or as a result of dissipative nongravitational interactions. We illustrate here, using numerical simulations, that purely self-gravitating systems evolving from quite simple initial configurations can in fact give rise easily to structures of this kind, of which the lifetime can be large compared to the dynamical characteristic time but short compared to the collisional relaxation timescale.

View Article and Find Full Text PDF

We use citation data of scientific articles produced by individual nations in different scientific domains to determine the structure and efficiency of national research systems. We characterize the scientific fitness of each nation-that is, the competitiveness of its research system-and the complexity of each scientific domain by means of a non-linear iterative algorithm able to assess quantitatively the advantage of scientific diversification. We find that technological leading nations, beyond having the largest production of scientific papers and the largest number of citations, do not specialize in a few scientific domains.

View Article and Find Full Text PDF

We study the statistics of the force felt by a particle in the class of a spatially correlated distribution of identical pointlike particles, interacting via a 1/r2 pair force (i.e., gravitational or Coulomb), and obtained by randomly perturbing an infinite perfect lattice.

View Article and Find Full Text PDF

We study the statistics of the gravitational (Newtonian) force in a particular class of weakly correlated spatial distributions of pointlike and unitary mass particles generated by the so-called Gauss-Poisson point processes. In particular we extend to these distributions the analysis that Chandrasekhar introduced for purely Poisson processes. In this way we can find the explicit asymptotic behavior of the probability density function of the force for both large and small values of the field as a generalization of the Holtzmark statistics.

View Article and Find Full Text PDF