Iron homeostasis is strictly related to numerous physiological pathways including cell cycle progression and cell growth. The newest anticancer strategies focus on either depleting the cells with a suitable chelator or increasing their loading by administering iron complexes to induce ferroptosis. Iron depletion inhibits cell proliferation, while iron overload induces the damage of guanine nucleobases in G-quadruplex structures via ROS generation, leading to genome instability.
View Article and Find Full Text PDFBackground: The myelin sheath ensures efficient nerve impulse transmission along the axons. Remyelination is a spontaneous process that restores axonal insulation, promoting neuroprotection and recovery after myelin damage. There is an urgent need for new pharmacological approaches to remyelination and to improve the most effective molecules.
View Article and Find Full Text PDFDespite progress in the prevention and diagnosis of cancer, current technologies for tumor detection present several limitations including invasiveness, toxicity, inaccuracy, lengthy testing duration and high cost. Therefore, innovative diagnostic techniques that integrate knowledge from biology, oncology, medicinal and analytical chemistry are now quickly emerging in the attempt to address these issues. Following this approach, here we developed a paper-based electrochemical device for detecting cancer-derived Small Extracellular Vesicles (S-EVs) in fluids.
View Article and Find Full Text PDFNOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies.
View Article and Find Full Text PDFColorectal cancer (CRC) often involves wild-type p53 inactivation by MDM2 and MDM4 overexpression, promoting tumor progression and resistance to 5-fluoruracil (5-FU). Disrupting the MDM2/4 heterodimer can proficiently reactivate p53, sensitizing cancer cells to 5-FU. Herein, we developed 16 peptides based on Pep3 (), the only known peptide acting through this mechanism.
View Article and Find Full Text PDFArch Pharm (Weinheim)
March 2024
Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest.
View Article and Find Full Text PDFReceptor-selective peptides are widely used as smart carriers for specific tumor-targeted delivery. A remarkable example is the cyclic nonapeptide RGD (CRGDKPGDC, ) that couples intrinsic cytotoxic effects with striking tumor-homing properties. These peculiar features are based on a rather complex multistep mechanism of action, where the primary event is the recognition of RGD integrins.
View Article and Find Full Text PDFThe discovery of selective agonists of cannabinoid receptor 2 (CB) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB agonists from which 25 derivatives were synthesized.
View Article and Find Full Text PDFToday it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun.
View Article and Find Full Text PDFEur J Med Chem
May 2023
Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CL) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described.
View Article and Find Full Text PDFCompounds featuring a 1,2,4-oxadiazole core have been recently identified as a new chemotype of farnesoid X receptor (FXR) antagonists. With the aim to expand this class of compounds and to understand the building blocks necessary to maintain the antagonistic activity, we describe herein the synthesis, the pharmacological evaluation, and the in vitro pharmacokinetic properties of a novel series of 1,2,4-oxadiazole derivatives decorated on the nitrogen of the piperidine ring with different N-alkyl and N-aryl side chains. In vitro pharmacological evaluation showed compounds and as the first examples of nonsteroidal dual FXR/Pregnane X receptor (PXR) modulators.
View Article and Find Full Text PDFHerpes simplex virus type-1 (HSV-1) and John Cunningham polyomavirus (JCPyV) are widely distributed DNA viruses causing mainly asymptomatic infection, but also mild to very severe diseases, especially when these viruses reach the brain. Some drugs have been developed to inhibit HSV-1 replication in host cells, but their prolonged use may induce resistance phenomena. In contrast, to date, there is no cure for JCPyV.
View Article and Find Full Text PDFOver recent years, αvβ6 and αvβ8 Arg-Gly-Asp (RGD) integrins have risen to prominence as interchangeable co-receptors for the cellular entry of herpes simplex virus-1 (HSV-1). In fact, the employment of subtype-specific integrin-neutralizing antibodies or gene-silencing siRNAs has emerged as a valuable strategy for impairing HSV infectivity. Here, we shift the focus to a more affordable pharmaceutical approach based on small RGD-containing cyclic pentapeptides.
View Article and Find Full Text PDFHigh levels of reactive oxygen species (ROS) in tumors have been shown to exert anti-tumor activity, leading to the concept of ROS induction as therapeutic strategy. The organometallic compound ferrocene (Fc) generates ROS through a reversible one-electron oxidation. Incorporation of Fc into a tumor-targeting, bioactive molecule can enhance its therapeutic activity and enable tumor specific delivery.
View Article and Find Full Text PDFThe newly emerged coronavirus, called SARS-CoV-2, is the causing pathogen of pandemic COVID-19. The identification of drugs to treat COVID-19 and other coronavirus diseases is an urgent global need, thus different strategies targeting either virus or host cell are still under investigation. Direct-acting agents, targeting protease and polymerase functionalities, represent a milestone in antiviral therapy.
View Article and Find Full Text PDFChemistry
August 2020
Here we investigated the structural and biological effects ensuing from the disulfide bond replacement of a potent and selective C-X-C chemokine receptor type 4 (CXCR4) peptide antagonist, with 1,4- and 1,5- disubstituted 1,2,3-triazole moieties. Both strategies produced candidates that showed high affinity and selectivity against CXCR4. Notably, when assessed for their ability to modulate the CXCL12-mediated cell migration, the 1,4-triazole variant conserved the antagonistic effect in the low-mid nanomolar range, while the 1,5-triazole one displayed the ability to activate the migration, becoming the first in class low-molecular-weight CXCR4 peptide agonist.
View Article and Find Full Text PDFGPBAR1 agonists have been identified as potential leads for the treatment of diseases related to colon inflammation such as Crohn's and ulcerative colitis. In this paper, we report the discovery of a small library of hyodeoxycholane analogues, decorated at C-6 with different substituents, as potent and selective GPBAR1 agonists. pharmacological assays showed that compound selectively activates GPBAR1 (EC = 0.
View Article and Find Full Text PDFPeptides and peptidomimetics are strongly re-emerging as amenable candidates in the development of therapeutic strategies against a plethora of pathologies. In particular, these molecules are extremely suitable to treat diseases in which a major role is played by protein-protein interactions (PPIs). Unlike small organic compounds, peptides display both a high degree of specificity avoiding secondary off-targets effects and a relatively low degree of toxicity.
View Article and Find Full Text PDFThe oncogene KRAS is involved in the pathogenesis of many tumors such as pancreatic, lung and colorectal cancers, thereby representing a relevant target for the treatment of these diseases. The KRAS P1 promoter contains a nuclease hypersensitive, guanine-rich sequence able to fold into a G-quadruplex motif (G4). The stabilization of this G4 structure by small molecules is emerging as a feasible approach to downregulate KRAS expression.
View Article and Find Full Text PDFThe management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities.
View Article and Find Full Text PDFHandb Exp Pharmacol
September 2019
In this chapter we provide an exhaustive overview of the binding modes of bile acid (BA) and non-BA ligands to the nuclear farnesoid X receptor (FXR) and the G-protein bile acid receptor 1 (GPBAR1). These two receptors play a key role in many diseases related to lipid and glucose disorders, thus representing promising pharmacological targets. We pay particular attention to the chemical and structural features of the ligand-receptor interaction, providing guidelines to achieve ligands endowed with selective or dual activity towards the receptor and paving the way to future drug design studies.
View Article and Find Full Text PDFAcetaminophen misuse is a leading cause of acute liver failure and liver transplantation for which therapy is poorly effective. FXR ligands have shown effective in reducing liver injury in several experimental and clinical settings. In this Letter, we have elaborated on the structure of GW4064, the first nonsteroidal agonist for FXR, to identify novel isoxazoles endowed with FXR agonistic activity and improved ADME properties.
View Article and Find Full Text PDFAs a cellular bile acid sensor, farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) participate in maintaining bile acid, lipid, and glucose homeostasis. To date, several selective and dual agonists have been developed as promising pharmacological approach to metabolic disorders, with most of them possessing an acidic conjugable function that might compromise their pharmacokinetic distribution. Here, guided by docking calculations, nonacidic 6-ethyl cholane derivatives have been prepared.
View Article and Find Full Text PDFThe G-protein bile acid receptor 1 (GPBAR1) has emerged in the last decade as prominent target for the treatment of metabolic and inflammatory diseases including type 2 diabetes, obesity, and non-alcoholic steatohepatitis. To date numerous bile acid derivatives have been identified as GPBAR1 agonists, however their clinical application is hampered by the lack of selectivity toward the other bile acid receptors. Therefore, non-steroidal GPBAR1 ligands able to selectively activate the receptor are urgently needed.
View Article and Find Full Text PDF