Human pre-mRNA processing relies on multi-subunit macromolecular complexes, which recognize specific RNA sequence elements essential for assembly and activity. Canonical pre-mRNA processing proceeds via the recognition of a polyadenylation signal (PAS) and a downstream sequence element (DSE), and produces polyadenylated mature mRNAs, while replication-dependent (RD) histone pre-mRNA processing requires association with a stem-loop (SL) motif and a histone downstream element (HDE), and produces cleaved but non-polyadenylated mature mRNAs. H2AC18 mRNA, a specific H2A RD histone pre-mRNA, can be processed to give either a non-polyadenylated mRNA, ending at the histone SL, or a polyadenylated mRNA.
View Article and Find Full Text PDFThe liver takes up bile salts from blood to generate bile, enabling absorption of lipophilic nutrients and excretion of metabolites and drugs. Human Na-taurocholate co-transporting polypeptide (NTCP) is the main bile salt uptake system in liver. NTCP is also the cellular entry receptor of human hepatitis B and D viruses (HBV/HDV), and has emerged as an important target for antiviral drugs.
View Article and Find Full Text PDFAromatic residues cluster in the core of folded proteins, where they stabilize the structure through multiple interactions. Nuclear magnetic resonance (NMR) studies in the 1970s showed that aromatic side chains can undergo ring flips-that is, 180° rotations-despite their role in maintaining the protein fold. It was suggested that large-scale 'breathing' motions of the surrounding protein environment would be necessary to accommodate these ring flipping events.
View Article and Find Full Text PDFUnlabelled: The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy-based on the construction of a lectin-glycan interaction (LGI) network-to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed.
View Article and Find Full Text PDFUnlabelled: We studied the flocculation mechanism at the molecular level by determining the atomic structures of N-Flo1p and N-Lg-Flo1p in complex with their ligands. We show that they have similar ligand binding mechanisms but distinct carbohydrate specificities and affinities, which are determined by the compactness of the binding site. We characterized the glycans of Flo1p and their role in this binding process and demonstrate that glycan-glycan interactions significantly contribute to the cell-cell adhesion mechanism.
View Article and Find Full Text PDFWe demonstrate the use of dip-pen nanolithography (DPN) to crystallize proteins on surface-localized functionalized lipid layer arrays. DOPC lipid layers, containing small amounts of biotin-DOPE lipid molecules, were printed on glass substrates and evaluated in vapor diffusion and batch crystallization screening setups, where streptavidin was used as a model protein for crystallization. Independently of the crystallization system used and the geometry of the lipid layers, nucleation of streptavidin crystals occurred specifically on the DPN-printed biotinylated structures.
View Article and Find Full Text PDFThe N-terminal domain of the Epa1p adhesin from Candida glabrata (N-Epa1p) is a calcium-dependent lectin, which confers the opportunistic yeast the ability to adhere to human epithelial cells. This lectin domain is able to interact with galactosides and, more precisely, with glycan molecules containing the Galβ-1,3-GalNAc disaccharide, also known as the T-antigen. Based on the crystallographic structure of the N-Epa1p domain and the role of the variable loop CBL2 in glycan binding, saturation mutagenesis on some residues of the CBL2 loop was used to increase the binding affinity of N-Epa1p for fibronectin, which was selected as a model of a human glycoprotein.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2013
Flo1p and Lg-Flo1p are two cell-wall adhesins belonging to the Flo (flocculation) protein family from the yeasts Saccharomyces cerevisiae and S. pastorianus. The main function of these modular proteins endowed with calcium-dependent lectin activity is to mediate cell-cell adhesion events during yeast flocculation, a process which is well known at the cellular level but still not fully characterized from a molecular perspective.
View Article and Find Full Text PDFThe yeast Candida glabrata represents the second major cause of clinical candidiasis cases in the world. The ability of this opportunistic pathogen to adhere to human epithelial and endothelial cells relies on the Epa adhesins, a large set of cell-wall proteins whose N-terminal domains are endowed with a calcium-dependent lectin activity. This feature allows the yeast cells to adhere to host cells by establishing multiple interactions with the glycans expressed on their cell membrane.
View Article and Find Full Text PDFThe opportunistic pathogen Candida albicans expresses on its surface Als (Agglutinin like sequence) proteins, which play an important role in the adhesion to host cells and in the development of candidiasis. The binding specificity of these proteins is broad, as they can bind to various mammalian proteins, such as extracellular matrix proteins, and N- and E-cadherins. The N-terminal part of Als proteins constitutes the substrate-specific binding domain and is responsible for attachment to epithelial and endothelial cells.
View Article and Find Full Text PDF