The assignment of protein backbone and side-chain NMR chemical shifts is the first step towards the characterization of protein structure. The recent introduction of proton detection in combination with fast MAS has opened up novel opportunities for assignment experiments. However, typical 3D sequential-assignment experiments using proton detection under fast MAS lead to signal intensities much smaller than the theoretically expected ones due to the low transfer efficiency of some of the steps.
View Article and Find Full Text PDFFast magic-angle spinning and partial sample deuteration allows direct detection of H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, H detection requires assignment of the H resonances. In this work, resonance assignments of backbone H and Hα are presented for HET-s(218-289) fibrils, based on the existing assignment of Cα, Cβ, C', and N resonances.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Amyloid-β (Aβ) is present in humans as a 39- to 42-amino acid residue metabolic product of the amyloid precursor protein. Although the two predominant forms, Aβ(1-40) and Aβ(1-42), differ in only two residues, they display different biophysical, biological, and clinical behavior. Aβ(1-42) is the more neurotoxic species, aggregates much faster, and dominates in senile plaque of Alzheimer's disease (AD) patients.
View Article and Find Full Text PDFThe formation of fibrils of the amyloid-β (Aβ) peptide is considered to be a key event in the pathology of Alzheimer's disease (AD). The determination of a high-resolution structure of these fibrils is relevant for the understanding of the molecular basis of AD. In this work, we present the sequential resonance assignment of one of the polymorphs of Aβ(1-42) fibrils.
View Article and Find Full Text PDFInflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD.
View Article and Find Full Text PDFThe apoptosis-associated speck-like protein (ASC protein) plays a central role in eukaryotic innate immune response. Upon infection, multiple ASC molecules assemble into long filaments, which are fundamental for triggering the cellular defense mechanism by starting an inflammatory cascade with the activation of caspase-1. ASC is composed of two domains, the C-terminal caspase-recruitment domain, which is involved in the recruitment of the caspase, and the N-terminal PYRIN domain (PYD), which is responsible for the formation of the filament.
View Article and Find Full Text PDFWe present solid-state NMR assignments of the N-terminal domain of the DnaB helicase from Helicobacter pylori (153 residues) in its microcrystalline form. We use a sequential resonance assignment strategy based on three-dimensional NMR experiments. The resonance assignments obtained are compared with automated resonance assignments computed with the ssFLYA algorithm.
View Article and Find Full Text PDFSolid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids.
View Article and Find Full Text PDFThe complement 4 binding protein (C4bp) plays a crucial role in the inhibition of the complement cascade. It has an extraordinary seven-arm octopus-like structure with 7 tentacle-like identical chains, held together at their C-terminal end. The C-terminal domain does oligomerize in isolation, and is necessary and sufficient to oligomerize full-length C4bp.
View Article and Find Full Text PDF