Drought impacts trees in varied temporal and spatial patterns, suggesting that heterogeneity of below-ground water stores influences the fate of trees under water stress. Karst ecosystems rely on shallow soil overlying bedrock that can store available water in primary pores. A contribution of rock moisture to tree water status has been previously demonstrated, but actual mechanisms and rates of rock-to-root water delivery remain unknown.
View Article and Find Full Text PDFA common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.
View Article and Find Full Text PDFIn lichens, accurate description of thallus water status is required to understand growth and photosynthesis dynamics. A recent model suggested that myco- and photobiont layers could have a different water energy status (i.e.
View Article and Find Full Text PDFIntertidal macroalgae are sessile poikilohydric organisms exposed to desiccation stress during emersion. Water relations parameters are useful tools to evaluate an organism's capacity to withstand water scarcity conditions, but such information on marine intertidal macroalgae is scarce. We assessed the water relations of the intertidal relict Fucus virsoides, the unique Fucus species endemic to the Mediterranean.
View Article and Find Full Text PDFLichens are a mutualistic symbiosis between a fungus and one or more photosynthetic partners. They are photosynthetically active during desiccation down to relative water contents (RWCs) as low as 30% (on dry mass). Experimental evidence suggests that during desiccation, the photobionts have a higher hydration level than the surrounding fungal pseudo-tissues.
View Article and Find Full Text PDFThe vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism.
View Article and Find Full Text PDFThe pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψ) measurements and the minimum equilibration time for stem water potential (Ψ) determination, taking 24 h leaf cover as control.
View Article and Find Full Text PDFPlant hydraulic traits related to leaf drought tolerance, like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict the potential impacts of drought on plants. While novel techniques have allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas injection (GI) technique has been proposed as a possibility to speed up the P50 estimation.
View Article and Find Full Text PDFXylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation.
View Article and Find Full Text PDFPlant water content is a simple and promising parameter for monitoring drought-driven plant mortality risk. However, critical water content thresholds leading to cell damage and plant failure are still unknown. Moreover, it is unclear whether whole-plant or a specific organ water content is the most reliable indicator of mortality risk.
View Article and Find Full Text PDFPredicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψ ) by measuring and projecting the Ψ of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.
View Article and Find Full Text PDF(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h-4 h under light was assessed (i) via a classical hydraulic method in leafless and branch segments stressed to xylem water potentials (Y) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted saplings.
View Article and Find Full Text PDFGlobal warming is exposing plants to increased risks of drought-driven mortality. Recent advances suggest that hydraulic failure is a key process leading to plant death, and the identification of simple and reliable proxies of species-specific risk of irreversible hydraulic damage is urgently required. We assessed the predictive power of leaf water content and shrinkage for monitoring leaf hydraulic failure in two Mediterranean native species, Salvia ceratophylloides (Sc) and S.
View Article and Find Full Text PDFNonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography.
View Article and Find Full Text PDFLeaf hydraulic conductance (K ) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (K ) and extra-vascular (K ) water pathways to K changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L.
View Article and Find Full Text PDFIn drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process.
View Article and Find Full Text PDFDrought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks.
View Article and Find Full Text PDFAccurate predictions of species distribution under current and future climate conditions require modeling efforts based on clear mechanistic relationships between climate variables and plant physiological functions. Vulnerability of leaves to xylem embolism is a key mechanistic trait that might be included in these modeling efforts. Here, we propose a simple set-up to measure leaf vulnerability to embolism on the basis of the optical method using a smartphone, a light source, and a notebook.
View Article and Find Full Text PDFThe xylem is a complex system that includes a network of dead conduits ensuring long-distance water transport in plants. Under ongoing climate changes, xylem embolism is a major and recurrent cause of drought-induced tree mortality. Non-structural carbohydrates (NSC) play key roles in plant responses to drought and frost stress, and several studies putatively suggest their involvement in the regulation of xylem water transport.
View Article and Find Full Text PDFThe maintenance of hydraulic function during and after a drought event is crucial for tree survival, but the importance of non-structural carbohydrates (NSCs) in the recovery phase is still debated. We tested whether higher NSC availability facilitates post-drought hydraulic recovery, by applying a short-term drought (S) and a long-term drought combined with shading (L) in Fraxinus ornus and Ostrya carpinifolia. Plants were then re-irrigated and recovery was checked 24 h later, by measuring water potential, stem percentage loss of hydraulic conductance (PLC) and NSC content.
View Article and Find Full Text PDFEnvironmental sustainability of viticulture is negatively affected by prolonged droughts. In limestone dominated regions, there is limited knowledge on grapevine water status and on methods for accurate evaluation of actual water demand, necessary to appropriately manage irrigation. During a dry vintage, we monitored plant and soil water relations in old and young vines of Istrian Malvasia on Karst red soil.
View Article and Find Full Text PDFUnderstanding which structural and functional traits are linked to species' vulnerability to embolism formation (P50) may provide fundamental knowledge on plant strategies to maintain an efficient water transport. We measured P50, wood density (WD), mean conduit area, conduit density, percentage areas occupied by vessels, parenchyma cells (PATOT) and fibers (FA) on branches of angiosperm and gymnosperm species. Moreover, we compiled a dataset of published hydraulic and anatomical data to be compared with our results.
View Article and Find Full Text PDFEmbolism repair ability has been documented in numerous species. Although the actual mechanism driving this phenomenon is still debated, experimental findings suggest that non-structural carbohydrates (NSC) stored in wood parenchyma would provide the osmotic forces to drive the refilling of embolized conduits. We selected 12 broadleaved species differing in vulnerability to xylem embolism (P) and amount of wood parenchyma in order to check direct evidence about the possible link(s) between parenchyma cells abundance, NSC availability and species-specific capacity to reverse xylem embolism.
View Article and Find Full Text PDF