Publications by authors named "Francesco Patuzzi"

Syngas and CO-rich off-gases are key chemical platforms to produce biofuels and bioproducts. From the perspective of optimizing and up-scaling CO co-digestion with organic waste streams, this study aims at assessing and quantifying the inhibitory effects of CO on acidogenic glucose fermentation and aceticlastic methanogenesis. Mesophilic cultures were fed in two sets of batch assays, respectively, with glucose and acetate while being exposed to dissolved CO in equilibrium with partial pressures in the range of 0.

View Article and Find Full Text PDF

This study evaluates an integrated biorefinery approach based on the waste hierarchy for the valorization of biodegradable waste, focusing on apple processing residues. Firstly, subcritical water hydrolysis was investigated at different experimental conditions (temperature 80 to 120 °C, dilution factor 10 to 30, residence time 10 to 30 min, initial pressure 10 to 30 bar) with the coincident aim of dissolving fermentable sugars and assess the effects of such treatment on the downstream solids. Secondly, spent solids were further processed by hydrothermal carbonization in the same reactor at fixed conditions (i.

View Article and Find Full Text PDF

The management of digestate, the main by-product of the anaerobic digestion (AD) process, is one of the most serious environmental issues. Although digestate is used on arable land as a fertilizer, it can have a negative impact on the environment due to nitrate leaching into the groundwater and ammonia volatilization into the atmosphere, with high economic and environmental disposal costs. Therefore, hydrothermal carbonization (HTC), a thermochemical biomass conversion process, could represent a sustainable and efficient alternative for digestate management.

View Article and Find Full Text PDF

In the South-Tyrol region (Italy), 46 gasifiers are currently operating and €200,000 are annually paid to dispose of as a waste 1300 tons of char. Therefore, there is a considerable interest in finding alternatives for the valorization of this solid by-product. The aim of this work is to assess the potential of char as energy source and to compare two scenarios.

View Article and Find Full Text PDF

The main purpose of this work is to investigate the application options of the char produced from gasification plants. Two promising mesoporous acidic catalysts were synthesized using char as a support material. Two char samples were collected from either a dual-stage or a rising co-current biomass gasification plant.

View Article and Find Full Text PDF

Spent coffee grounds are the moist solid residues of coffee brewing and in most cases, the disposal is done without any intermediate valorization actions for materials and energy recovery. State-of-the-art applications include extraction of the liquids and application of high-temperature pyrolysis. Both strategies have significant potential but have also some disadvantages (extensive pre-treatment, high costs) when applied on a large scale.

View Article and Find Full Text PDF

This study responds to the need of finding innovative routes for valorizing char derived from biomass gasification. Char is currently treated as a waste representing an energetic and economic loss for plant owners. However, it displays many similarities to activated carbon (AC) and could replace it in several applications.

View Article and Find Full Text PDF

This work introduces the process of Frictional Torrefaction and comes as a continuation to the previous work done on Frictional Pyrolysis, which is a novel method of pyrolysis that does not utilize heat but only friction and pressure. Both processes (i.e.

View Article and Find Full Text PDF

Modeling can be a powerful tool for designing and optimizing gasification systems. Modeling applications for small scale/fixed bed biomass gasifiers have been interesting due to their increased commercial practices. Fixed bed gasifiers are characterized by a wide range of operational conditions and are multi-zoned processes.

View Article and Find Full Text PDF

In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate.

View Article and Find Full Text PDF

The possibility to apply the hydrothermal carbonization (HTC) process to off-specification compost (EWC 19.05.03) at present landfilled was investigated in this work.

View Article and Find Full Text PDF