Advanced thermochemical technologies for plastic waste valorization represent an interesting alternative to waste-to-energy options. They are particularly appealing for waste-to-hydrogen and waste-to-chemicals applications, with autothermal steam-oxygen gasification in fluidized bed reactors showing the greatest market potential. The study describes a series of experimental tests carried out on a large pilot-scale fluidized bed gasifier, using steam and O-enriched air, with increasing fractions of oxygen.
View Article and Find Full Text PDFCatalytic tar cracking is a promising technique for hot syngas cleaning unit in gasification plants because it can preserve tars chemical energy, so increasing the syngas heating value. The cost associated with catalyst preparation is a key issue, together with its deactivation induced by coke deposition. Iron is a cheap and frequently used catalyst, which can also be found in some industrial wastes.
View Article and Find Full Text PDFThe study focuses on mixed plastics waste (MPW), whose complex and unpredictable composition (due to high polymer heterogeneity, additives, and contaminants) makes its valorisation a true technical, environmental, economic, and regulatory challenge. Chemical recycling by means of advanced thermochemical treatments (ATT) could be a successful strategy, able to support the transition from a carbon intensive to a carbon negative sector, and alternative to the current treatments of energy recovery or mechanical downcycling. Some of these ATTs provide an efficient recovery of valuable resources, such as fuels and chemicals, but their role is mainly limited by time necessary to complete the process optimization and implement the required infrastructures.
View Article and Find Full Text PDF