Targeted Radionuclide Therapy (TRT) is a medical technique exploiting radionuclides to combat cancer growth and spread. TRT requires a supply of radionuclides that are currently produced by either cyclotrons or nuclear research reactors. In this context, the ISOLPHARM project investigates the production of innovative radionuclides for medical applications.
View Article and Find Full Text PDFProton beam therapy is considered a step forward with respect to electromagnetic radiation, thanks to the reduction in the dose delivered. Among unwanted effects to healthy tissue, cardiovascular complications are a known long-term radiotherapy complication. The transcriptional response of cardiac tissue from xenografted BALB/c nude mice obtained at 3 and 10 days after proton irradiation covering both the tumor region and the underlying healthy tissue was analyzed as a function of dose and time.
View Article and Find Full Text PDFThe aim of the present study consists of the evaluation of the biodistribution of a novel Ga-labeled radiopharmaceutical, [Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. The Ga-labeled radiopharmaceutical was designed to specifically bind to the cholecystokinin receptor (CCK2R). This receptor, naturally present in healthy tissues such as the stomach, is a biomarker for numerous tumors when overexpressed.
View Article and Find Full Text PDFGlioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress.
View Article and Find Full Text PDFRadionuclides are unstable isotopes that mainly emit alpha (α), beta (β) or gamma (γ) radiation through radiation decay. Therefore, they are used in the biomedical field to label biomolecules or drugs for diagnostic imaging applications, such as positron emission tomography (PET) and/or single-photon emission computed tomography (SPECT). A growing field of research is the development of new radiopharmaceuticals for use in cancer treatments.
View Article and Find Full Text PDFDespite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients.
View Article and Find Full Text PDFCopper radioisotopes are generally employed for cancer imaging and therapy when firmly coordinated via a chelating agent coupled to a tumor-seeking vector. However, the biologically triggered Cu-Cu redox switching may constrain the in vivo integrity of the resulting complex, leading to demetallation processes. This unsought pathway is expected to be hindered by chelators bearing N, O, and S donors which appropriately complements the borderline-hard and soft nature of Cu and Cu.
View Article and Find Full Text PDFIn 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues.
View Article and Find Full Text PDFThe 64Cu-labeled chelator was analyzed in vivo by positron emission tomography (PET) imaging to evaluate its biodistribution in a murine model at different acquisition times. For this purpose, nine 6-week-old female Balb/C nude strain mice underwent micro-PET imaging at three different time points after 64Cu-labeled chelator injection. Specifically, the mice were divided into group 1 (acquisition 1 h after [64Cu] chelator administration, n = 3 mice), group 2 (acquisition 4 h after [64Cu]chelator administration, n = 3 mice), and group 3 (acquisition 24 h after [64Cu] chelator administration, n = 3 mice).
View Article and Find Full Text PDFBackground: There is currently significant interest in assessing the role of oxygen in the radiobiological effects at ultra-high dose rates. Oxygen modulation is postulated to play a role in the enhanced sparing effect observed in FLASH radiotherapy, where particles are delivered at 40-1000 Gy/s. Furthermore, the development of laser-driven accelerators now enables radiobiology experiments in extreme regimes where dose rates can exceed 10 Gy/s, and predicted oxygen depletion effects on cellular response can be tested.
View Article and Find Full Text PDFDespite all the recent pharmacological advances and the introduction of targeted therapies in clinical practice, cancer still remains one of the leading cause of death, accounting for 10 million deaths per year, based on the most recent reports [...
View Article and Find Full Text PDFThe rapid improvement of space technologies is leading to the continuous increase of space missions that will soon bring humans back to the Moon and, in the coming future, toward longer interplanetary missions such as the one to Mars. The idea of living in space is charming and fascinating; however, the space environment is a harsh place to host human life and exposes the crew to many physical challenges. The absence of gravity experienced in space affects many aspects of human biology and can be reproduced in vitro with the help of microgravity simulators.
View Article and Find Full Text PDFProtontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and B atoms, i.
View Article and Find Full Text PDFIn Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.
View Article and Find Full Text PDFCancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type.
View Article and Find Full Text PDFAdvances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion.
View Article and Find Full Text PDFSpecific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC.
View Article and Find Full Text PDFGlioblastoma (GBM) is one of the most lethal types of tumor due to its high recurrence level in spite of aggressive treatment regimens involving surgery, radiotherapy and chemotherapy. Hypoxia is a feature of GBM, involved in radioresistance, and is known to be at the origin of treatment failure. The aim of this work was to assess the therapeutic potential of a new targeted c-SRC inhibitor molecule, named Si306, in combination with X-rays on the human glioblastoma cell lines, comparing normoxia and hypoxia conditions.
View Article and Find Full Text PDFThe purpose of this paper is to characterize the skin deterministic damage due to the effect of proton beam irradiation in mice occurred during a long-term observational experiment. This study was initially defined to evaluate the insurgence of myelopathy irradiating spinal cords with the distal part of a Spread-out Bragg peak (SOBP). To the best of our knowledge, no study has been conducted highlighting high grades of skin injury at the dose used in this paper.
View Article and Find Full Text PDFThe improvement of diagnostic techniques and the efficacy of new therapies in clinical practice have allowed cancer patients to reach a higher chance to be cured together with a better quality of life. However, tumors still represent the second leading cause of death worldwide. On the contrary, chemotherapy and radiotherapy (RT) still lack treatment plans which take into account the biological features of tumors and depend on this for their response to treatment.
View Article and Find Full Text PDFGlioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT.
View Article and Find Full Text PDFIn breast cancer (BC) care, radiotherapy is considered an efficient treatment, prescribed both for controlling localized tumors or as a therapeutic option in case of inoperable, incompletely resected or recurrent tumors. However, approximately 90% of BC-related deaths are due to the metastatic tumor progression. Then, it is strongly desirable to improve tumor radiosensitivity using molecules with synergistic action.
View Article and Find Full Text PDFChondrosarcoma is a malignant tumor that arises from cartilaginous tissue and is radioresistant and chemoresistant to conventional treatments. The preferred treatment consists of surgical resection, which might cause severe disabilities for the patient; in addition, this procedure might be impossible for inoperable locations, such as the skull base. Carbon ion irradiation (hadron therapy) has been proposed as an alternative treatment, primarily due to its greater biological effectiveness and improved ballistic properties compared with conventional radiotherapy with X-rays.
View Article and Find Full Text PDFBackground/aim: Radiation therapy (RT) represents a therapeutic option in breast cancer (BC). Even if a great number of BC patients receive RT, not all of them report benefits, due to radioresistance that gets activated through several factors, such as the hormone receptor status. Herein, we analyzed the gene expression profiles (GEP) induced by RT in triple-negative BC (TNBC) MDA-MB-231, to study signalling networks involved in radioresistance.
View Article and Find Full Text PDF