Over the last few years, the interest in biodegradable polymers has been increasing for several reasons, mainly because of the concerns about environmental protection and the reduction of emissions, especially those related to non-renewable fossil-based resources. Therefore, special attention has increased for the development of environment-friendly polymers such as biodegradable/compostable polymers, especially when they come from renewable resources, since this would help in further reducing energy consumption during their life cycle, as well as the overall environmental impact. Thus, every biopolymer should be accurately investigated in terms of its processability and main technological properties in order to find the most suitable applications.
View Article and Find Full Text PDFOver the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples.
View Article and Find Full Text PDFPosterior cruciate ligament (PCL) injury is a rare ligamentous knee injury which most commonly occurs due to direct trauma; it represents only 0.65% of knee injuries. On the basis of magnetic resonance imaging (MRI), PCL injury is divided into surgical and non-surgical.
View Article and Find Full Text PDFDuring the processing and during their lifetime, polymers are subjected to several environmental stresses-thermomechanical, photo-oxidative, etc.-that can strongly modify their chemical and molecular structure and, consequently, their morphology. Reduction of the molecular weight and formation of double bonds and oxygenated groups are the main changes observed as a consequence of the degradation.
View Article and Find Full Text PDFAnything that is not recycled and/or recovered from waste represents a loss of raw materials. Recycling plastics can help to reduce this loss and to reduce greenhouse gases, improving the goal of the decarbonization of plastic. While the recycling of single polymers is well assessed, the recycling of mixed plastics is very difficult because of the strong incompatibility among the different polymers usually present in urban waste.
View Article and Find Full Text PDFCompact discs (CDs) and digital versatile discs (DVDs) are mainly made by polycarbonate disc, a thin layer of aluminum or silver, a thin layer of a coating and a thin layer of a label of paper or PET. The recycling of these discs is difficult due to the removal of these non-polymeric layers and to our best knowledge, no industrial plants have been resent for their recycling. In this work, we propose a facile way to remove the non-polymeric layers and investigate the effect of the repetitive extrusion process on the processability and on the mechanical properties of the recycled polycarbonate.
View Article and Find Full Text PDFThe photo-oxidation of polypropylene at two different temperatures and in three different environments-air, distilled water and sea water-has been followed as a function of the irradiation time. The photo-oxidation kinetic is dramatically dependent on the amount of oxygen available for the oxidation reactions and on the temperature. While the photo-oxidation is very fast in air, the degradation is much slower in the two aqueous media.
View Article and Find Full Text PDFDecarbonization of plastics is based on two main pillars: bio-based polymers and recycling. Mechanical recycling of biodegradable polymers could improve the social, economic and environmental impact of the use of these materials. In this regard, the aim of this study was to investigate whether concentrations of the same recycled biopolymer could significantly affect the rheological and mechanical properties of biodegradable monopolymer blends.
View Article and Find Full Text PDFLignin can be obtained as a byproduct during cellulose-rich pulp fibers production and it is habitually treated as waste or intended for low-value destinations. However, due to UV absorption and mechanical properties, lignin can contribute to the fabrication of biodegradable blown films with superior performances. In this study, it was established the suitability of lignin for manufacturing biocomposite PBAT blown films with higher stiffness and photo-oxidation resistance.
View Article and Find Full Text PDFA polybutyleneadipate-co-butylenetherephthalate (PBAT) sample, commercially known as Ecoflex, was processed via melt extrusion with CaCO nanoparticles coated with a hydrophobic coating. Blown films of PBAT and two composites with nanofiller (2% and 5%wt) were prepared and degradation tests in soil at 30 °C up to 180 days were carried out with weight loss measurements. Furthermore, biodegradation test according to ISO 14851 was carried out at 30 °C.
View Article and Find Full Text PDFBiodegradable Mater-Bi (MB) composites reinforced with hazelnut shell (HS) powder were prepared in a co-rotating twin-screw extruder followed by compression molding and injection molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal and rheological properties of MB/HS biocomposites were studied. Rheological tests showed that the incorporation of HS significantly increased the viscosity of composites with non-Newtonian behavior at low frequencies.
View Article and Find Full Text PDFIn order to mitigate the social and ecological impacts of post-consumer plastic made of conventional petrochemical polymers, the market of (bio)degradable plastics have recently become more widespread. Although (bio)degradable plastics could be an environmentally friendly substitute of petrochemical ones, the consequences of their presence in the waste management system and in the environment (if not correctly disposed) are not always positive and plastic pollution is not automatically solved. Consequently, this work aims to review how plastic (bio)degradability affects the municipal solid waste management cycle.
View Article and Find Full Text PDFThe effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer.
View Article and Find Full Text PDFIn this work, biocomposite blown films based on poly(butylene adipate-co-terephthalate) (PBAT) as biopolymeric matrix and biochar (BC) as filler were successfully fabricated. The materials were subjected to a film-blowing process after being compounded in a twin-screw extruder. The preliminary investigations conducted on melt-mixed PBAT/BC composites allowed PBAT/BC 5% and PBAT/BC 10% to be identified as the most appropriate formulations to be processed via film blowing.
View Article and Find Full Text PDFPolymer-processing operations with dominating elongational flow have a great relevance, especially in several relevant industrial applications. Film blowing, fiber spinning and foaming are some examples in which the polymer melt is subjected to elongational flow during processing. To gain a thorough knowledge of the material-processing behavior, the evaluation of the rheological properties of the polymers experiencing this kind of flow is fundamental.
View Article and Find Full Text PDFThis work investigates the effects of very small amounts of fumed silica on the morphology and on the rheological and mechanical behaviour of polypropylene nanocomposites and on their photo-oxidation behaviour. Polypropylene nanocomposites were prepared using a twin-screw corotating extruder with 0, 1 and 2 wt/wt% of SiO. Morphological, mechanical, thermomechanical and rheological properties were examined.
View Article and Find Full Text PDFThis study explores the processability, mechanical, and thermal properties of biocompostable composites based on poly (butylene adipate-co-terephthalate) (PBAT) as polymer matrix and microcrystalline cellulose (MCC) derived from softwood almond () shells (as-MCC) as filler at two different weight concentration, i.e., 10 wt% and 20 wt%.
View Article and Find Full Text PDFInterest in the development of graphene-based materials for advanced applications is growing, because of the unique features of such nanomaterials and, above all, of their outstanding versatility, which enables several functionalization pathways that lead to materials with extremely tunable properties and architectures. This review is focused on the careful examination of relationships between synthetic approaches currently used to derivatize graphene, main properties achieved, and target applications proposed. Use of functionalized graphene nanomaterials in six engineering areas (materials with enhanced mechanical and thermal performance, energy, sensors, biomedical, water treatment, and catalysis) was critically reviewed, pointing out the latest advances and potential challenges associated with the application of such materials, with a major focus on the effect that the physicochemical features imparted by functionalization routes exert on the achievement of ultimate properties capable of satisfying or even improving the current demand in each field.
View Article and Find Full Text PDFThis work is focused on the influence of moisture content on the processing and mechanical properties of a biodegradable polyester used for applications in injection molding. The pellets of the biodegradable polyester were exposed under different relative humidity conditions at a constant temperature before being compression molded. The compression-molded specimens were again placed under the above conditions before the mechanical testing.
View Article and Find Full Text PDFIn this work, bionanocomposites based on two different types of biopolymers belonging to the MaterBi family and containing two kinds of modified nanoclays were compounded in a twin-screw extruder and then subjected to a film blowing process, aiming at obtaining sustainable films potentially suitable for packaging applications. The preliminary characterization of the extruded bionanocomposites allowed establishing some correlations between the obtained morphology and the material rheological and mechanical behavior. More specifically, the morphological analysis showed that, regardless of the type of biopolymeric matrix, a homogeneous nanofiller dispersion was achieved; furthermore, the established biopolymer/nanofiller interactions caused a restrain of the dynamics of the biopolymer chains, thus inducing a significant modification of the material rheological response, which involves the appearance of an apparent yield stress and the amplification of the elastic feature of the viscoelastic behavior.
View Article and Find Full Text PDFIn this work, bionanocomposites based on different biodegradable polymers and two types of nanofillers, namely a nanosized calcium carbonate and an organomodified nanoclay, were produced through melt extrusion, with the aim to evaluate the possible applications of these materials as a potential alternative to traditional fossil fuel-derived polyolefins, for the production of irrigation pipes. The rheological behavior of the formulated systems was thoroughly evaluated by exploiting different flow regimes, and the obtained results indicated a remarkable effect of the introduced nanofillers on the low-frequency rheological response, especially in nanoclay-based bionanocomposites. Conversely, the shear viscosity at a high shear rate was almost unaffected by the presence of both types of nanofillers, as well as the rheological response under nonisothermal elongational flow.
View Article and Find Full Text PDFThe research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.
View Article and Find Full Text PDFIt is well known that the need for more environmentally friendly materials concerns, among other fields, the food packaging industry. This regards also, for instance, nets used for agricultural product (e.g.
View Article and Find Full Text PDFMechanical recycling is one of the possible ways to enhance the value of postconsumer plastic materials. However, the final performance of the recycled material will strongly depend on the quality of the selection made on the recycled product and on the degradation of the properties. In this context, the present study examines the effect of reprocessing for five successive extrusion cycles on the rheological, mechanical and thermal properties of a poly(butylene adipate-co-terephthalate) (PBAT)-based blend on samples reprocessed in both dry and wet conditions.
View Article and Find Full Text PDF