Publications by authors named "Francesco Mannella"

Transitive inference (TI) is a cognitive task that assesses an organism's ability to infer novel relations between items based on previously acquired knowledge. TI is known for exhibiting various behavioral and neural signatures, such as the serial position effect (SPE), symbolic distance effect (SDE), and the brain's capacity to maintain and merge separate ranking models. We propose a novel framework that casts TI as a probabilistic preference learning task, using one-parameter Mallows models.

View Article and Find Full Text PDF
Article Synopsis
  • - Efficient sensory detection involves ignoring irrelevant information, like separating self-movement from object perception, using a model based on predictive coding and sensorimotor mismatch detection.
  • - Researchers created a model with a three-neuron circuit that shows how these mismatch responses occur, integrating this into a broader neural network with two streams that predict self-generated optic flow and process external movement cues.
  • - The model allows for the segmentation of objects from their background and supports object categorization, showing similarities between the neural processes in different species, including primates.
View Article and Find Full Text PDF

This paper considers neural representation through the lens of active inference, a normative framework for understanding brain function. It delves into how living organisms employ generative models to minimize the discrepancy between predictions and observations (as scored with variational free energy). The ensuing analysis suggests that the brain learns generative models to navigate the world adaptively, not (or not solely) to understand it.

View Article and Find Full Text PDF

Although the spontaneous origins of concepts from interaction is often given for granted, how the process can start without a fully developed sensorimotor representation system has not been sufficiently explored. Here, we offer a new hypothesis for a mechanism supporting concept formation while learning to perceive and act intentionally. We specify an architecture in which multi-modal sensory patterns are mapped in the same lower-dimensional representation space.

View Article and Find Full Text PDF

Rodents use whisking to probe actively their environment and to locate objects in space, hence providing a paradigmatic biological example of active sensing. Numerous studies show that the control of whisking has anticipatory aspects. For example, rodents target their whisker protraction to the distance at which they expect objects, rather than just reacting fast to contacts with unexpected objects.

View Article and Find Full Text PDF

Although the occurrence of Parkinsonian akinesia and tremor is traditionally associated to dopaminergic degeneration, the multifaceted neural processes that cause these impairments are not fully understood. As a consequence, current dopamine medications cannot be tailored to the specific dysfunctions of patients with the result that generic drug therapies produce different effects on akinesia and tremor. This article proposes a computational model focusing on the role of dopamine impairments in the occurrence of akinesia and resting tremor.

View Article and Find Full Text PDF

Learning in biologically relevant neural-network models usually relies on Hebb learning rules. The typical implementations of these rules change the synaptic strength on the basis of the co-occurrence of the neural events taking place at a certain time in the pre- and post-synaptic neurons. Differential Hebbian learning (DHL) rules, instead, are able to update the synapse by taking into account the temporal relation, captured with derivatives, between the neural events happening in the recent past.

View Article and Find Full Text PDF

The first "object" that newborn children play with is their own body. This activity allows them to autonomously form a sensorimotor map of their own body and a repertoire of actions supporting future cognitive and motor development. Here we propose the theoretical hypothesis, operationalized as a computational model, that this acquisition of body knowledge is not guided by random motor-babbling, but rather by autonomously generated goals formed on the basis of intrinsic motivations.

View Article and Find Full Text PDF

Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome.

View Article and Find Full Text PDF

Devaluation is the key experimental paradigm used to demonstrate the presence of instrumental behaviors guided by goals in mammals. We propose a neural system-level computational model to address the question of which brain mechanisms allow the current value of rewards to control instrumental actions. The model pivots on and shows the computational soundness of the hypothesis for which the internal representation of instrumental manipulanda (e.

View Article and Find Full Text PDF

The basal ganglia and cortex are strongly implicated in the control of motor preparation and execution. Re-entrant loops between these two brain areas are thought to determine the selection of motor repertoires for instrumental action. The nature of neural encoding and processing in the motor cortex as well as the way in which selection by the basal ganglia acts on them is currently debated.

View Article and Find Full Text PDF

The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with "phasic" burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is "tonic" DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered by either intrinsically or extrinsically motivating stimuli dynamically affect the basal ganglia by impacting on a selection process this system performs on its cortical input.

View Article and Find Full Text PDF

Appraisal of a stressful situation and the possibility to control or avoid it is thought to involve frontal-cortical mechanisms. The precise mechanism underlying this appraisal and its translation into effective stress coping (the regulation of physiological and behavioural responses) are poorly understood. Here, we propose a computational model which involves tuning motivational arousal to the appraised stressing condition.

View Article and Find Full Text PDF

Goal-directed behavior is a fundamental means by which animals can flexibly solve the challenges posed by variable external and internal conditions. Recently, the processes and brain mechanisms underlying such behavior have been extensively studied from behavioral, neuroscientific and computational perspectives. This research has highlighted the processes underlying goal-directed behavior and associated brain systems including prefrontal cortex, basal ganglia and, in particular therein, the nucleus accumbens (NAcc).

View Article and Find Full Text PDF

Reinforcement (trial-and-error) learning in animals is driven by a multitude of processes. Most animals have evolved several sophisticated systems of 'extrinsic motivations' (EMs) that guide them to acquire behaviours allowing them to maintain their bodies, defend against threat, and reproduce. Animals have also evolved various systems of 'intrinsic motivations' (IMs) that allow them to acquire actions in the absence of extrinsic rewards.

View Article and Find Full Text PDF

Previous experiments have shown that when domestic chicks (Gallus gallus) are first trained to locate food elements hidden at the centre of a closed square arena and then are tested in a square arena of double the size, they search for food both at its centre and at a distance from walls similar to the distance of the centre from the walls experienced during training. This paper presents a computational model that successfully reproduces these behaviours. The model is based on a neural-network implementation of the reinforcement-learning actor - critic architecture (in this architecture the 'critic' learns to evaluate perceived states in terms of predicted future rewards, while the 'actor' learns to increase the probability of selecting the actions that lead to higher evaluations).

View Article and Find Full Text PDF