OTX homeobox (HB) genes are expressed during embryonic morphogenesis and during the development of olfactory epithelium in adult organisms. Mutations occurring in these genes are often related to tumorigenesis in human. No data are available today regarding the possible correlation between OTX genes and tumors of the nasal cavity.
View Article and Find Full Text PDFOTX Homeobox genes are involved in embryonic morphogenesis and in the development of olfactory epithelium in adult. Mutations occurring in the OTX genes are reported to be associated to tumorigenisis in human. No reports correlate the expression of OTX genes and neoplasms of the nasal cavity.
View Article and Find Full Text PDFWe analyzed the results of periodic chromosome analyses performed on bone marrow of 22 patients with Shwachman-Diamond syndrome (SDS), 8 directly observed and 14 from the literature, selected because of changes in the cytogenetic picture during the course of the disease. This study points out some features of the cytogenetic evolution in SDS relevant for prognostic evaluation but never noted in the literature. In particular, the lack of any clonal progression and the frequent appearance of independent clones with chromosomal changes different from the one initially discovered, with possible severe prognostic implications, are reported.
View Article and Find Full Text PDFBackground: An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML.
Results: We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature.
Conclusions: The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature.
Background: Chromosome changes in the bone marrow (BM) of patients with persistent cytopenia are often considered diagnostic for a myelodysplastic syndrome (MDS). Comprehensive cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in cases with cytopenia without morphological signs of MDS.
Results: Chromosome anomalies were found in the BM of three patients, without any morphological evidence of MDS: 1) an acquired complex rearrangement of chromosome 21 in a boy with severe aplastic anaemia (SAA); the rearrangement caused the loss of exons 2-8 of the RUNX1 gene with subsequent hypoexpression.
Background: The results of cytogenetic investigations on unbalanced chromosome anomalies, both constitutional and acquired, were largely improved by comparative genomic hybridization on microarray (a-CGH), but in mosaicism the ability of a-CGH to reliably detect imbalances is not yet well established. This problem of sensitivity is even more relevant in acquired mosaicism in neoplastic diseases, where cells carrying acquired imbalances coexist with normal cells, in particular when the proportion of abnormal cells may be low.We constructed a synthetic mosaicism by mixing the DNA of three patients carrying altogether seven chromosome imbalances with normal sex-matched DNA.
View Article and Find Full Text PDFArray-based comparative genomic hybridization (aCGH) has proven indispensable to the study of unbalanced constitutional and acquired chromosomal anomalies, but its sensitivity for detecting mosaicism is still not well established. On the basis of the ADM2 algorithm used for microarray image analysis with one of the most widely used oligomer-based aCGH platforms [the whole genome 244K system by Agilent Technologies (Santa Clara, CA)] we suggest a formula to infer the percentage of cells bearing a chromosome imbalance in cases with constitutional or acquired mosaicism. Three examples of acquired mosaicism in which this formula was applied are reported together with parallel fluorescence in situ hybridization (FISH) to interphase nuclei with informative probes.
View Article and Find Full Text PDFThe mammary gland, the unique organ that primarily form at puberty, is an ideal model to study the functions of homeobox (HB) genes in both development and tumorigenesis. HB genes comprise a large family of developmental regulators that have a critical role in cell growth and differentiation. In the normal mammary gland, homeobox genes are involved in ductal formation, epithelial branching, and lobulo-alveolar development by regulating epithelial proliferation and differentiation.
View Article and Find Full Text PDFTranslocation t(9;22), which produces the BCR-ABL gene, is pathognomonic of chronic myeloid leukemia. For clinical purposes, the amount of chimeric transcript is considered proportional to the leukemic clone; thus, mRNA is commonly used for molecular monitoring of patients. However, there is no consensus regarding the degree of increase in mRNA that should cause concern or whether the absence of transcript indicates a "cure.
View Article and Find Full Text PDFAn investigation of 22 new patients with Shwachman-Diamond syndrome (SDS) and the follow-up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non-clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age-related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients' ageing.
View Article and Find Full Text PDFReciprocal translocation t(9;22) is central to the pathogenesis of chronic myeloid leukemia. Some authors have suggested that Alu repeats facilitate this process, but supporting analyses have been sparse and often anecdotal. The purpose of this study was to analyze the local structure of t(9;22) translocations and assess the relevance of interspersed repeat elements at breakpoints.
View Article and Find Full Text PDFClonal chromosome anomalies may be found in the bone marrow (BM) of patients with Shwachman syndrome, who are at risk to develop myelodysplastic syndromes and/or acute myeloid leukemias. In particular, an isochromosome i(7)(q10) is frequent, and is usually monitored by chromosome analyses. We tested an approach by real-time quantitative polymerase chain reaction (RQ-PCR) on a chromosome 7 polymorphism.
View Article and Find Full Text PDFThe evaluation of residual disease, which has prognostic value in the treatment of hematological malignancies, is currently assessed by scoring a limited number of cells by karyotyping and molecular cytogenetics. Real-time polymerase chain reaction (PCR) is an easier and more sensitive technique, enables analysis of a larger number of cells, and decreases sampling error. However, real-time PCR has been applied only to target transcripts of fusion genes.
View Article and Find Full Text PDFAn investigation of 14 patients with Shwachman syndrome (SS), using standard and molecular cytogenetic methods and molecular genetic techniques, showed that (1) the i(7)(q10) is not, or not always, an isochromosome but may arise from a more complex mechanism, retaining part of the short arm; (2) the i(7)(q10) has no preferential parental origin; (3) clonal chromosome changes, such as chromosome 7 anomalies and del(20)(q11), may be present in the bone marrow (BM) for a long time without progressing to myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML); (4) the del(20)(q11) involves the minimal region of deletion typical of MDS/AML; (5) the rate of chromosome breaks is not significantly higher than in controls, from which it is concluded that SS should not be considered a breakage syndrome; (6) a specific kind of karyotype instability is present in SS, with chromosome changes possibly found in single cells or small clones, often affecting chromosomes 7 and 20, in the BM. Hence, we have confirmed our previous hypothesis that the SS mutation itself implies a mutator effect that is responsible for MDS/AML through these specific chromosome anomalies. This conclusion supports the practice of including cytogenetic monitoring in the follow-up of SS patients.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) are becoming the most common type of markers used in genetic analysis. In the present report a SNP has been chosen to test the applicability of Real Time PCR to discriminate and quantify SNPs alleles on DNA pools. Amplification Refractory Mutation System (ARMS) and Mismatch Amplification Mutation Assay (MAMA) has been applied.
View Article and Find Full Text PDFGenes Chromosomes Cancer
July 2004
Familial platelet disorder with propensity to acute myelogenous leukemia, or FPD/AML (OMIM #601399), is a rare autosomal dominant condition, with only 12 families reported. It is characterized by qualitative and quantitative platelet defects and predisposition to the development of myeloid malignancies. Causal mutations have been identified in the RUNX1 gene (also known as AML1, CBFA2) in the 11 families so far analyzed.
View Article and Find Full Text PDFA family is reported, in which two sisters presented with myelodysplastic syndrome (MDS), namely refractory anemia with excess of blasts in transformation (RAEB-t), and refractory anemia (RA). Bone marrow chromosome changes were present in both: trisomy and tetrasomy 8 (with a pericentric inversion of one chromosome 8) in the older sister, and monosomy 7 (with clones with additional trisomies 19 and 21) in the younger one. Molecular data were obtained on the parental chromosome involved in these numerical anomalies, which proved to be of paternal origin in these cases.
View Article and Find Full Text PDFThe trisomy 8 found in malignancies may derive from a constitutional trisomy 8 mosaicism (CT8M), and in these cases the trisomy itself may be regarded as the first mutation in a multistep carcinogenetic process. To assess the frequency of CT8M in hematological dysplastic and neoplastic disorders with trisomy 8, an informative sample of 14 patients was collected. The data ascertained included chromosome analyses of fibroblast cultures and of PHA-stimulated blood cultures in patients with normal blood differential count, as well as possible CT8M clinical signs.
View Article and Find Full Text PDF