Publications by authors named "Francesco Lanza Di Scalea"

Ultrasound imaging using an active sensing array has been extensively studied in both time domain and frequency domain. Subspace decomposition methods in match field beamforming such as the multiple signal classification (MUSIC) algorithm can achieve subwavelength resolution of distinct point scatterers. However, when the size of the target is on the order of one wavelength or larger, the MUSIC type algorithms suffer from poor performance due to a tangled eigen structure.

View Article and Find Full Text PDF

Ultrasonic synthetic aperture focus techniques (SAFTs) using less than the total number of available array elements to transmit ("sparse" transmissions) have been recently used in both medical imaging and industrial nondestructive testing (NDT) imaging to increase test speed and simplify multiplexer hardware. The challenge of sparse arrays is to obtain a reasonable image quality given the reduced transmitter-receiver combinations available to the beamforming process. This article proposes a "ultrasparse" SAFT method that employs a minimum number of transmitter elements (from one to four elements only) to obtain an entire full-matrix capture (FMC) set of waveforms.

View Article and Find Full Text PDF

This article discusses the application of sparse synthetic aperture focusing techniques (SAFTs) for fast and accurate ultrasonic nondestructive testing (NDT) imaging of solids in cases where a wedge is required between the transducer array and the test medium. A wedge is often used to appropriately direct the ultrasonic beams when testing for structural defects at particular orientations or when inspecting parts with particular geometries (e.g.

View Article and Find Full Text PDF

An ultrasonic sonar-based ranging technique is introduced for measuring full-field railroad crosstie (sleeper) deflections. Tie deflection measurements have numerous applications, such as detecting degrading ballast support conditions and evaluating sleeper or track stiffness. The proposed technique utilizes an array of air-coupled ultrasonic transducers oriented parallel to the tie, capable of "in-motion" contactless inspections.

View Article and Find Full Text PDF

This article presents improvements to ultrasonic imaging of solid platelike structures using the minimum-variance distortionless response (MVDR) beamforming processor. The primary application of this work is in the nondestructive testing (NDT) of platelike components that are widely used in aerospace, marine, and civil structures. The study proposes a new set of weights, or MVDR replica vectors, that are based on the physics of the propagating Lamb modes, including the symmetric mode S0, the antisymmetric mode A0, and the shear horizontal mode SH0.

View Article and Find Full Text PDF

Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects.

View Article and Find Full Text PDF

The focus of this paper is the estimation of the dynamic transfer function between two outputs of a linear system subjected to an uncontrolled and generally unknown excitation, and accounting for possible uncorrelated noise present at both outputs. Several applications of this case exist in the passive identification of dynamic systems including the health monitoring and/or non-destructive evaluation of structures subjected to natural "ambient" excitations. It is well known that noise-robust transfer function estimation of a single-input-single-output system can be achieved by a normalized cross-power spectrum operation.

View Article and Find Full Text PDF

This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach.

View Article and Find Full Text PDF

This paper discusses some improvements to ultrasonic synthetic imaging in solids with primary applications to nondestructive testing of materials and structures. Specifically, the study proposes new adaptive weights applied to the beamforming array that are based on the physics of the propagating waves, specifically the displacement structure of the propagating longitudinal (L) mode and shear (S) mode that are naturally coexisting in a solid. The wave mode structures can be combined with the wave geometrical spreading to better filter the array (in a matched filter approach) and improve its focusing ability compared to static array weights.

View Article and Find Full Text PDF

The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon.

View Article and Find Full Text PDF

Modern rail construction uses continuous-welded rail (CWR). The presence of very few joints leads to an increasing concern due to the large longitudinal loads caused by restrained thermal expansion and contraction, following seasonal temperature variations. The knowledge of the current state of thermal stress in the rail or, equivalently, the rail neutral temperature (corresponding to zero net longitudinal force) is a key need within the railroad transportation community in order to properly schedule slow-order mandates and prevent derailments.

View Article and Find Full Text PDF

This article concerns the generation and properties of double harmonics in nonlinear isotropic waveguides of complex cross-section. Analytical solutions of nonlinear Rayleigh-Lamb waves and rod waves have been known for some time. These solutions explain the phenomenon of cumulative double harmonic generation of guided waves.

View Article and Find Full Text PDF

There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations.

View Article and Find Full Text PDF

Recent theoretical and experimental studies in a wide range of applications have demonstrated that Green's functions (impulse responses) can be extracted from cross-correlation of diffuse fields using only passive sensors. This letter demonstrates the passive-only reconstruction of coherent Lamb waves (dc-500 kHz) in an aluminum plate of thickness comparable to aircraft fuselage and wing panels. It is further shown that the passively reconstructed waves are sensitive to the presence of damage in the plate as it would be expected in a typical "active" guided wave test.

View Article and Find Full Text PDF

This paper deals with the propagation of ultrasonic guided waves in adhesively bonded lap-shear joints. The topic is relevant to bond inspection by ultrasonic testing. Specifically, the propagation of the lowest-order, antisymmetric a0 mode through the joint is examined.

View Article and Find Full Text PDF