Publications by authors named "Francesco L Bilotta"

Correction to: Endocrine https://doi.org/10.1007/s12020-017-1396-0 The article Insulin and osteocalcin: further evidence for a mutual cross-talk, written by Francesco L.

View Article and Find Full Text PDF

Purpose: The forkhead transcription factor (FoxO1) is a master transcriptional regulator of fundamental cellular processes ranging from cell proliferation and differentiation to inflammation and metabolism. However, despite its relevance, the mechanism(s) underlying FoxO1 gene regulation are largely unknown. We have previously shown that the chromatin factor high-mobility group A1 (HMGA1) plays a key role in the transcriptional regulation of glucose-responsive genes, including some that are involved in FoxO1-mediated glucose metabolism.

View Article and Find Full Text PDF

Aim: To investigate matrix metalloproteinase-11 () expression in adipose tissue dysfunction, using and models of insulin resistance.

Methods: Culture of mouse 3T3-L1 preadipocytes were induced to differentiation into mature 3T3-L1 adipocytes. Cellular insulin resistance was induced by treating differentiated cultured adipocytes with hypoxia and/or tumor necrosis factor (TNF)-α, and transcriptional changes were analyzed in each condition thereafter.

View Article and Find Full Text PDF

Purpose: In the last few years, bone has been recognized as an endocrine organ that modulates glucose metabolism by secretion of osteocalcin, an osteoblast-specific hormone, that influences fat deposition and blood sugar levels. To date, however, very few in vitro models have been developed to investigate, at the molecular levels, the relationship between glucose, insulin and osteocalcin. This study aims at covering this gap.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a major complication of diabetes mellitus, and is the leading cause of blindness in working-age people. Usually, DR progresses from the asymptomatic non-proliferative DR that does not significantly alter vision, to proliferative DR (PDR), which can result in aberrant retinal neovessel formation and blindness. The High-Mobility-Group A1 (HMGA1) protein is a transcriptional master regulator of numerous genes, including metabolic and inflammatory genes, which, by modulating the expression of angiogenic factors, may induce retinal neovascularization, a hallmark of PDR.

View Article and Find Full Text PDF

Background: Acute Myocardial infarction (AMI), a leading cause of morbidity and mortality worldwide, is a dreadful acute complication of coronary atherosclerosis. Type 2 diabetes mellitus (T2DM) is associated with an increased risk of developing AMI. The architectural transcription factor high-mobility-group AT-hook 1 (HMGA1) has been involved in atherosclerosis, plaque formation, inflammation, and in the pathogenesis of insulin resistance and T2DM.

View Article and Find Full Text PDF