Silicene, the analog of graphene composed of silicon atoms arranged in a honeycomb lattice, has garnered significant attention due to its unique properties, positioning it as a promising candidate for various applications in electronic devices, photovoltaics, photocatalysis, and biomedicals. While the chemical synthesis of silicene nanosheets has traditionally involved time-spending and expensive- methods, this study introduces a rapid vacuum/nitrogen cycle assisted (VANS) protocol that dramatically speeds up the production of silicene. The strategic implementation of vacuum/nitrogen cycles provides the efficient removal of the generated hydrogen, boosting the overall reaction kinetics while maintaining inert reaction conditions to prevent oxidation.
View Article and Find Full Text PDFThe continuous growth in energy demand requires researchers to find new solutions to enlarge and diversify the possible ways of exploiting renewable energy sources. Our idea is the development of a solar concentrator based on trapping the luminous radiation with a smart window. This system is able to direct light towards the photovoltaic cells placed on window borders and produce electricity, without any movable part and without changing its transparency.
View Article and Find Full Text PDFColloidal semiconductor nanoplatelets (NPLs) are a subgroup of quantum confined materials that have recently emerged as promising active materials for solution processed light-emitting diodes (LEDs) thanks to their peculiar structural and electronic properties as well as their reduced dimensionality. Nowadays, the conventional structure for NPL-based LEDs makes use of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer (HTL). This is a well-known conjugated conductive polymer because it leads to high LED efficiency, though it has limited stability in air due to its intrinsic acidity and hygroscopicity.
View Article and Find Full Text PDFMany nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored.
View Article and Find Full Text PDFConjugated polymers with ionic pendant groups (CPEs) are receiving increasing attention as solution-processed interfacial materials for organic solar cells (OSCs). Various anionic CPEs have been successfully used, on top of ITO (Indium Tin Oxide) electrodes, as solution-processed anode interlayers (AILs) for conventional devices with direct geometry. However, the development of CPE AILs for OSC devices with inverted geometry is an important topic that still needs to be addressed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2019
Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models.
View Article and Find Full Text PDFThe design and the synthesis of new self-assembling conjugates is reported. The target compounds are characterized by the presence of a self-immolative linker that secures a controlled release induced by lipase cleavage. 4-(1,2-Diphenylbut-1-en-1-yl)aniline is used as a self-assembling inducer and amino-thiocolchicine as prototype of drug.
View Article and Find Full Text PDFIn this work a novel combination of side chain functionalities, alkyl-phosphonate (EP) and alkyl-ammonium bromide (NBr) groups, on a polyfluorene backbone (PF-NBr-EP) was studied as cathode interfacial material (CIM) in polymer-based solar cells. The devices were made with a conventional geometry, with PTB7:PC BM as active layer and aluminum as metal electrode. The CIM showed good solubility in ethanol and film forming ability onto the active layer so that its deposition could be finely tuned.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2018
Organic light-emitting transistors (OLETs) show the fascinating combination of electrical switching characteristics and light generation capability. However, to ensure an effective device operation, an efficient injection of charges into the emissive layer is required. The introduction of solution-processed conjugated polyelectrolyte (CPE) films at the emissive layer/electrode interface represents a promising strategy to improve the electron injection process by dipole formation.
View Article and Find Full Text PDFColloidal nanoplatelets (NPLs), owing to their efficient and narrow-band luminescence, are considered as promising candidates for solution-processable light-emitting diodes (LEDs) with ultrahigh color purity. To date, however, the record efficiencies of NPL-LEDs are significantly lower than those of more-investigated devices based on spherical nanocrystals. This is particularly true for red-emitting NPL-LEDs, the best-reported external quantum efficiency (EQE) of which is limited to 0.
View Article and Find Full Text PDFPush-coating is a green and extremely low-cost process in which only few microliters of conjugated polymer solutions are used to produce thin films using capillary forces. Here, we adapt this fabrication technique to replicate self-assembled nanoporous structures on green and red light-emitting conjugated polymer thin films. These films display ring-like photoluminescence and are successfully integrated into polymer light-emitting devices as emitting layers.
View Article and Find Full Text PDFIn this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS) optical fiber sensor devices (optrodes), as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip.
View Article and Find Full Text PDFBecause of both its easy processability and compatibility with roll-to-roll processes, polymer electronics is considered to be the most promising technology for the future generation of low-cost electronic devices such as light-emitting diodes and solar cells. However, the state-of-the-art deposition technique for polymer electronics (spin-coating) generates a high volume of chlorinated solution wastes during the active layer fabrication. Here, we demonstrate that devices with similar or higher performances can be manufactured using the push-coating technique in which a poly(dimethylsiloxane) (PDMS) layer is simply laid over a very small amount of solution (less than 1μL/covered cm), which is then left for drying.
View Article and Find Full Text PDFThis paper reports a simple and economical method for the fabrication of nanopatterned optical fiber nanotips. The proposed patterning approach relies on the use of the nanosphere lithography of the optical fiber end facet. Polystyrene (PS) nanospheres are initially self-assembled in a hexagonal array on the surface of water.
View Article and Find Full Text PDFA novel and versatile approach to tune photoluminescence and electroluminescence by in situ controlled thermal deprotonation is presented. This methodology, based on a single organic π-conjugated material (pyrene derivative), allows the manufacturing of organic light-emitting diode (OLED) prototypes by solution methods with controlled tunable emission ranging from the orange (protonated form of the dye) to the blue (pristine or deprotonated form). While several protonation/deprotonation cycles can be performed on thin films, for the devices only one cycle is possible so that their use as anti-fraud labels can be envisaged.
View Article and Find Full Text PDFWe propose a novel fabrication method for realizing robust and solvent resistant honeycomb films by combining parylene deposition with the polymer auto-organization phenomenon leading to breath figures. Parylene CVD process is suitable for producing a conformal protective layer on the honeycomb surface, reinforcing and stabilizing this structure. We demonstrate that the stabilized porous films can be filled with chloroform solution of fluorescent materials, without losing the integrity of their microstructure.
View Article and Find Full Text PDFColloidal quantum dots (QDs) are emerging as true candidates for light-emitting diodes with ultrasaturated colors. Here, we combine CdSe/CdS dot-in-rod heterostructures and polar/polyelectrolytic conjugated polymers to demonstrate the first example of fully solution-based quantum dot light-emitting diodes (QD-LEDs) incorporating all-organic injection/transport layers with high brightness, very limited roll-off and external quantum efficiency as high as 6.1%, which is 20 times higher than the record QD-LEDs with all-solution-processed organic interlayers and exceeds by over 200% QD-LEDs embedding vacuum-deposited organic molecules.
View Article and Find Full Text PDFWe report on the intercalation of a cationic fluorescent oligo(fluorene) in between the 2D interlayer region of a fluoromica type silicate. The formation of intercalated structures with different fluorophore contents is observed in powders by synchrotron radiation XRD. Successively, the hybrids are dispersed in poly(styrene) through in situ polymerization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2014
We report broadband and quasi-omnidirectional antireflective (AR) structures inspired to the nipple arrays of moth eyes. These nanocoatings, based on thin elastomeric films, are prepared by simple self-assembly processing of a co-polymer specifically designed to this purpose, and PDMS replica molding. Typically, their surface is covered by a compact distribution of hemispherical nanodomes of about 250 nm in diameter and about 100 nm in height.
View Article and Find Full Text PDFIn this article, we report a detailed study of surface modification of magnetite nanoparticles by means of three different grafting agents, functional for the preparation of magnetic polymer brushes. 3-Aminopropyltriethoxysilane (APTES), 3-chloropropyltriethoxysilane (CPTES), and 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane (CTCS) were chosen as grafting models through which a wide range of polymer brushes can be obtained. By means of accurate thermogravimetric analysis a good control over the amount of immobilized molecules is achieved, and optimal operating conditions for each grafting agent are consequently determined.
View Article and Find Full Text PDFThe amphiphilic block copolymer formed by a hydrophobic body of polystyrene and a hydrophilic head of poly[9,9-di(2-(2-tetrahydropyranyl-oxy)hexyl)fluorene-alt-9,9-dioctylfluorene] was synthesized, and its solution was used to create thin films with ordered pattern of holes, by means of the breath figure technique. These porous films, after a thermal treatment, were found to show ordered aggregates of the pi-conjugated blocks in the place of the cavities. This is probably due to a preorganization of the two different blocks of the copolymer occurring during the breath figure formation, which is driven by the condensation of water microdroplets on the polymer solution, and to a following phase segregation occurring during the thermal annealing.
View Article and Find Full Text PDFOne flavone-C-glycoside and two flavonol-O-glycosides were recognized and isolated as the main flavonoidal components in nine different carnation cultivars, and their chemical structures have been determined by spectroscopic methods, including UV detection, MS and NMR. The distribution of these three compounds in flowers, leaves, stems, young sprouts, and roots of each cultivar was evaluated by a simple HPLC-UV method: the graphic representation of their content in the different tissues allows to identify and characterize unambiguously each considered carnation cultivar. The presented method could be an easy, inexpensive and reliable tool for carnation cultivar discrimination.
View Article and Find Full Text PDFA new prenylated coumarin, S-6-[2-(hydroxymethyl)butoxy]-7-hydroxy-4-methyl-2 H-chromen-2-one ( 1), named pavietin, has been isolated from the leaves of an Aesculus pavia genotype along with three known flavonol glycosides, quercetin 3- O-alpha-rhamnoside (quercitrin, 2), quercetin 3- O-alpha-arabinoside ( 3), and isorhamnetin 3- O-alpha-arabinoside (distichin, 4). The chemical structure of compound 1 was determined by chemical and spectroscopic methods, inclusive of UV, MS, and 1D and 2D NMR experiments. It showed appreciable antimicrobial properties against several pathogens, displaying a significant antifungal activity toward one of the main fungal parasites of Aesculus species, Guignardia aesculi.
View Article and Find Full Text PDFWe describe the preparation of a compound whose molecules consist of two metal sandwich stands carrying tentacles with affinity to metal surfaces and holding an axle that carries a dipolar or a nonpolar rotator. The dipolar rotor exists as three pairs of enantiomers, rapidly interconverting at room temperature. When mounted on a gold surface, each molecule represents a chiral altitudinal rotor, with the rotator axle parallel to the surface.
View Article and Find Full Text PDF