Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest types of cancer and the chemotherapies such as gemcitabine/nab-paclitaxel are confronted with intrinsic or acquired resistance. The aim of this study was to investigate mechanisms underlying paclitaxel resistance in PDAC and explore strategies to overcome it.
Methods: Three paclitaxel (PR) and gemcitabine resistant (GR) PDAC models were established.
Purpose: Chemoresistance remains a major challenge in treating pancreatic ductal adenocarcinoma (PDAC). Although chemoradiation has proven effective in other tumor types, such as head and neck squamous cell carcinoma, its role in PDAC and effect on acquired chemoresistance have yet to be fully explored. In this study, we investigated the sensitivity of gemcitabine-resistant (GR) and paclitaxel-resistant (PR) PDAC cells to ionizing radiation (IR) and their underlying mechanisms.
View Article and Find Full Text PDFDespite the strong evidence linking the transactive response DNA-binding protein 43 (TDP-43) aggregation to the pathogenesis of frontotemporal lobar degeneration with TDP-43, amyotrophic lateral sclerosis and several neurodegenerative diseases, our knowledge of the sequence and structural determinants of its aggregation and neurotoxicity remains incomplete. Herein, we present a new method for producing recombinant full-length TDP-43 filaments that exhibit sequence and morphological features similar to those of brain-derived TDP-43 filaments. We show that TDP-43 filaments contain a β-sheet-rich helical amyloid core that is fully buried by the flanking structured domains of the protein.
View Article and Find Full Text PDFLittle is known about the impact of metabolic stimuli on brain tissue at a molecular level. The ketone body beta-hydroxybutyrate (BHB) can be a signaling molecule regulating gene transcription. Thus, we assessed lysine beta-hydroxybutyrylation (K-bhb) levels in proteins extracted from the cerebral cortex of mice undergoing a ketogenic metabolic challenge (48 h fasting).
View Article and Find Full Text PDFRecent evidence suggested the role of secreted extracellular vesicles (EVs) in the intracellular signalling within the liver becoming a promising candidate as biomarker in hepatocellular carcinoma (HCC). Osteopontin (OPN) seems to play a relevant role both for early diagnosis of HCC than on the mechanisms that drive oncogenesis but, to date, information on the expression levels of OPN in EVs secreted by HCC tumor cell line are missing. The study aimed to verify, by transcriptional and proteomic study, the presence of OPN in EVs secreted by tumorigenic (HepG2) and non-tumorigenic hepatocyte cell line (WRL68), and to analyse the expression variations of OPN, its isoforms and miRNA-181a in both these EVs.
View Article and Find Full Text PDFIn the past years, it has become increasingly clear that the protein cargo of the different lipoprotein classes is largely responsible for carrying out their various functions, also in relation to pathological conditions, including atherosclerosis. Accordingly, detailed information about their apolipoprotein composition and structure may contribute to the revelation of their role in atherogenesis and the understanding of the mechanisms that lead to atherosclerotic degeneration and toward vulnerable plaque formation. With this aim, shotgun proteomics was applied to identify the apolipoprotein signatures of both high-density and low-density lipoproteins (HDL and LDL) plasma fractions purified from healthy volunteers and atherosclerotic patients with different plaque typologies who underwent carotid endarterectomy.
View Article and Find Full Text PDFMolecular markers are suggested to improve the diagnostic and prognostic accuracy in patients with coronary artery disease (CAD) beyond current clinical scores based on age, gender, symptoms and traditional risk factors. In this context, plasma lipids are emerging as predictors of both plaque composition and risk of future events. We aim to identify plasma lipid biomarkers associated to CAD indexes of stenosis severity, plaque lipid content and a comprensive score of CAD extent and its risk.
View Article and Find Full Text PDFPrimary Sjögren's syndrome (pSS) is a complex heterogeneous disease characterized by a wide spectrum of glandular and extra-glandular manifestations. In this pilot study, a SWATH-MS approach was used to monitor extracellular vesicles-enriched saliva (EVs) sub-proteome in pSS patients, to compare it with whole saliva (WS) proteome, and assess differential expressed proteins between pSS and healthy control EVs samples. Comparison between EVs and WS led to the characterization of compartment-specific proteins with a moderate degree of overlap.
View Article and Find Full Text PDFInfantile neural ceroid lipofuscinosis (INCL) is a lysosomal storage disorder characterized by mutations in the gene that leads to lack of the lysosomal enzyme palmitoyl-protein thioesterase-1 (PPT1), which causes the progressive death of cortical neurons. Enzyme replacement therapy (ERT) is one of the most promising treatments, but its translation toward a clinical use is hampered by the need to deliver the enzyme to the central nervous system and a more detailed understanding of its capability to restore physiologic conditions at the biochemical and protein level, beyond the simple regulation of enzymatic activity. Targeted nanoparticles can promote protein delivery to the central nervous system and affect biological pathways inside cells.
View Article and Find Full Text PDFCell signalling is tightly regulated by post-translational modification of proteins. Among them, phosphorylation is one of the most interesting and important. Identifying phosphorylation sites on proteins is challenging and requires strategies for pre-separation and enrichment of the phosphorylated species.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is one of the most aggressive types of brain cancer, characterized by rapid progression, resistance to treatments, and low survival rates; the development of a targeted treatment for this disease is still today an unattained objective. Among the different strategies developed in the latest few years for the targeted delivery of nanotherapeutics, homotypic membrane-membrane recognition is one of the most promising and efficient. In this work, we present an innovative drug-loaded nanocarrier with improved targeting properties based on the homotypic recognition of GBM cells.
View Article and Find Full Text PDFIn the era of personalised medicine new biomarkers are required to early diagnose Sjögren's syndrome (SS), to define different disease subsets and to direct patients' clinical management and therapeutic intervention. In the last few years, several efforts have evaluated saliva proteome to detect and monitor primary SS. Although clinically valuable, these studies presented some limitations that have partially prevented the use of salivary biomarkers in clinical practice.
View Article and Find Full Text PDFClin Exp Rheumatol
October 2019
Primary Sjögren's syndrome (pSS) is a complex and heterogeneous disorder characterised by a wide spectrum of glandular and extra-glandular features. Novel insights into disease pathogenesis and the discovery of novel biomarkers are allowing us to characterise the disease not only phenotypically on the basis of clinical presentation, but also on the basis of the endotype. Ultimately, a better stratification of patients may pave new avenues for novel targeted therapies, opening new possibilities for the application of personalised medicine in pSS.
View Article and Find Full Text PDFBackground: This proof of concept study was aimed at characterizing novel salivary biomarkers specific for different subsets in primary Sjögren's syndrome (pSS) in order to improve patients' profiling.
Methods: pSS patients were stratified in three subgroups according to both (a) focus score in the minor salivary gland biopsies (i.e.
This data article associated with the manuscript "A high glucose levels is associated with decreased aspirin-mediated acetylation of platelet cyclooxygenase (COX)-1 at serine 529: a pilot study" (Finamore et al., 2018) refers to the shotgun proteomics approach carried out on platelet protein extracts from diabetic patients and healthy controls. Platelet proteins were incubated with 500 µM aspirin for 30 min at 37 °C to enhance the acetylation process.
View Article and Find Full Text PDFDiabetes is a major risk factor for cardiovascular diseases. Although aspirin is considered a cornerstone of the prevention and treatment of atherothrombotic-related ischemic events, this antiplatelet drug appears to be less effective in patients with poorly controlled diabetes. It has been suggested that the glycation of platelet proteins plays a pivotal role in poor responsiveness to aspirin.
View Article and Find Full Text PDFUnlabelled: The competition effect between aspirin-mediated acetylation and protein glycation has been a matter of concern for decades. However, the exact interactions between these two post-translational modifications are still not well understood. Several efforts have been made to explain how aspirin prevents glycation, but the influence of prior protein glycation on the action of aspirin has never been investigated.
View Article and Find Full Text PDFThe proposed protocol presents a comprehensive approach for large-scale qualitative and quantitative analysis of glycated proteins (GP) in complex biological samples including biological fluids and cell lysates such as plasma and red blood cells. The method, named glycation isotopic labeling (GIL), is based on the differential labeling of proteins with isotopic [(13)C6]-glucose, which supports quantitation of the resulting glycated peptides after enzymatic digestion with endoproteinase Glu-C. The key principle of the GIL approach is the detection of doublet signals for each glycated peptide in MS precursor scanning (glycated peptide with in vivo [(12)C6]- and in vitro [(13)C6]-glucose).
View Article and Find Full Text PDFPlatelets are of pathophysiological relevance in haemostasis, wound repair, inflammation and cardiovascular disease. We have shown that human platelets express a biologically active Cystic Fibrosis Transmembrane Conductance Regulator, which is dysfunctional in Cystic Fibrosis (CF) patients, and regulate platelet responses related to inflammation and its resolution. In order to further elucidate platelet involvement in CF inflammation, we pursued a comparative proteomic analysis of cells from healthy donors and CF patients, in association with a non-supervised comparative analysis of the Gene Ontology.
View Article and Find Full Text PDFBackground: Platelets, the smallest human blood cells component, have a key role in the control of haemostasis and thrombosis but they have also been shown to be implicated in a number of different pathological states because of their involvement also in the process of inflammation end its resolution. Their peculiar anucleated morphology render the proteomics an intriguing approach to understand their biology. Given the high impact of platelet in different diseases we have started a systematic investigation of protein repertoire in controlled platelet preparation.
View Article and Find Full Text PDF