Publications by authors named "Francesco F Summa"

A method for the calculation of divergenceless, magnetically induced quantum mechanical current densities in molecules that approximates the exact current is presented. This was achieved by adding to the calculated conventional current density, i.e.

View Article and Find Full Text PDF

Quantum chemical topology addresses the study of the chemical structure by applying the tools of differential topology to scalar and vector fields obtained by quantum mechanics. Here, the magnetically induced isotropically averaged Lorentz force density was computed and topologically analyzed for 11 small molecules. Critical points (attractors, repellers, and saddles) were determined and trajectories connecting the attractors computed.

View Article and Find Full Text PDF

Some years ago, Jishan Wu reported the synthesis of 8MC and 10MC, two homologues of the cyclopenta-ring-fused oligo(m-phenylene) macrocycles mMC, each behaving as an annulene-within-an-annulene (AWA). This was a surprising result as the AWA behavior is rare. Both molecules have a partial polyradical character, enforced by the quest for restoring some aromatic character of benzene rings.

View Article and Find Full Text PDF

A time-dependent method has been developed to solve the standard response equation for the calculation of dynamic molecular property densities, endowed with the characteristic of being origin-invariant, entirely in the atomic orbital basis at both HF and DFT level of theory. The method has been tuned in particular for the calculation of origin-independent electric dipole polarizability density and specific rotation power density. Some demonstrations are given for the hexabenzocoronene molecule and the Tröger's base.

View Article and Find Full Text PDF

Optical chirality sensing has gained significant attention in recent years. Within this field, the quest for stereodynamic chiroptical probes capable of detecting cryptochiral guests presents a formidable challenge. Macrocycles exhibiting planar chirality have emerged as promising candidates for amplifying the chirality of cryptochiral guests.

View Article and Find Full Text PDF

Some planar and non-planar clarenes have been studied using maps of magnetically induced quantum-mechanical current density and tools from differential topology to assess their magnetic response in connection with recent results by Du and Wang. Bond current strengths have been computed to estimate quantitative measures. Isosurfaces of the divergence of induced Lorentz force density have been shown to provide useful additional criteria, especially in the case of non-planar clarenes.

View Article and Find Full Text PDF

The interaction of a molecule with optical fields is customarily interpreted by means of induced time-dependent electric polarizabilities, magnetizabilities and mixed electric-magnetic polarizabilities. In general, these properties can be rationalized by integrals of density functions formulated in terms of induced charge and current densities. In this perspective, we focus on what has been done so far at the theoretical level, and on what can be expected to be unveiled from the topological study of suitable density functions, endowed with the fundamental requirement of origin invariance.

View Article and Find Full Text PDF

The derivation of the total induced current density vector field, in the presence of static and uniform magnetic and electric fields, is illustrated in a more clear and formally correct language together with a discussion on the charge-current conservation law not presented before for the spin-orbit coupling contribution. The theory here exposed turns out to be in fully agreement with the theory of Special Relativity and it is applicable to open-shell molecules in the presence of a nonvanishing spin orbit coupling. The discussion here exposed turns out to be accurately valid for a strictly central field due to the chosen approximation of the spin-orbit coupling Hamiltonian, but it is appropriate to deal correctly with molecular systems.

View Article and Find Full Text PDF

New naphthocorrole ligands, display both the cavity size of corroles and the dianionic character of porphyrins. Nonaromatic and yet flaunting deceptively porphyrin-like optical spectra, they are readily accessible a simple protocol.

View Article and Find Full Text PDF

Cycloparaphenylenes (CPPs) and carbon nanobelts (CNBs) represent some of the most iconic cyclic molecular nanocarbons in recent chemistry owing to their unique properties derived from rigid, strained, and cyclic π-conjugated systems. In the last decade, the synthesis of various sizes of CPPs and CNBs has been achieved that allowed not only for investigating their size-dependent properties and strategically using such properties in various applications but also understanding the fundamental features of cyclic π-conjugated systems and molecular nanocarbons in general. Herein, we report on the synthesis, size-dependent properties, and paratropic belt currents of methylene-bridged []cycloparaphenylenes ([]MCPP, = 6, 8, 10).

View Article and Find Full Text PDF

In the computation of molecular dynamic magnetizabilities and magnetic dipole moments, three different reference points are required: (i) origin of coordinate system, (ii) origin of vector potential , and (iii) origin of multipole expansion. This study shows that methods relying on continuous translation of origin of the current density induced by optical magnetic fields provide an effective solution to the problem of choices (i) and (ii), in that they yield origin independent within the algebraic approximation, for any basis set. Frequency-dependent magnetizabilities are also invariant with respect to (iii), as a consequence of symmetry, for a number of molecular point groups.

View Article and Find Full Text PDF

The JAP model (after Jirásek, Anderson, and Peeks) to retrieve global current strengths from experimental H chemical shifts has been tested with DFT computations. Both global and local tropicities are correctly predicted in most cases and the quantitative agreement is overall fair. An extension of the model is found to give improvement in an exemplary critical case, where the global delocalized current is negligible and the current density map is dominated by local currents.

View Article and Find Full Text PDF

The origin-independent current density induced by a perpendicular magnetic field in the infinitene molecule has been calculated, confirming the recently presented result by Orozco-Ic et al. ( 2022, 24, 6404-6409) of two disjointed global current pathways along the edges formed by 24 carbon atoms having the form of the infinity symbol. The current strength has been assessed along the C-C bonds forming the two separate circuits, whose particular shape provides a diamagnetic exaltation which is only 73% of the expected value for this aromatic molecule.

View Article and Find Full Text PDF

The electronic current density, induced in a molecule by the optical magnetic field associated with a frequency-dependent monochromatic plane wave, assumed to be spatially uniform within the electric quadrupole approximation, has been studied by using a theoretical method based on a continuous translation of its origin. The induced electronic current density vector field designated by this procedure, invariant of the origin for any point of the molecular domain, is obtained via a computational scheme, formally annihilating the diamagnetic contribution of the conventional common-origin approach based on perturbation theory. In a preliminary application of the theoretical methods outlined in the present work, the simple molecule of lithium hydride has been investigated.

View Article and Find Full Text PDF

Enantiomorphic right- and left-handed polyproline type I helices in four cyclic dodecapeptoids with methoxyethyl and propargyl side chains are observed for the first time by single crystal X-ray diffraction. The peculiar absence of NH⋯OC hydrogen bonds in peptoids unveils the role of intramolecular backbone-to-backbone CO⋯CO interactions and CH⋯OC hydrogen bonds in the stabilization of the macrocycle conformation. Moreover, intramolecular backbone-side chain C5 CH⋯OC hydrogen bonds emerge as a stabilizing factor.

View Article and Find Full Text PDF

1,4-Conjugate addition of ((chloromethyl)sulfonyl)benzenes to arylideneisoxazol-5-ones, followed by one-pot, N-selective trapping in the presence of electrophiles, was investigated. This strategy led to the synthesis of new, stable N-protected isoxazol-5-ones in good yields and high diastereolectivity. The study of the reactivity of obtained products in the presence of the Mo(CO)/HO system allowed the development of a cascade reaction leading to novel methyl ketones in high yields and unchanged dr bearing an uncommon chloromethinearylsulfonyl end group.

View Article and Find Full Text PDF

The continuous search for metamaterials with special properties, suitable for new technological applications, is presently being driven by a preceding theoretical development, which took place after the introduction of new physical entities, anapole and a family of toroidal multipoles, having a border in common with those considered in the more familiar electric and magnetic multipole expansions. The related concept of toroidization, i.e.

View Article and Find Full Text PDF

The properties of mixtures of two polysaccharides, arabinogalactan (AG) and hyaluronic acid (HA), were investigated in solution by the measurement of diffusion coefficients of water protons by DOSY (Diffusion Ordered SpectroscopY), by the determination of viscosity and by the investigation of the affinity of a small molecule molecular probe versus AG/HA mixtures in the presence of bovine submaxillary mucin (BSM) by HNMR spectroscopy. Enhanced mucoadhesive properties, decreased mobility of water and decreased viscosity were observed at the increase of AG/HA ratio and of total concentration of AG. This unusual combination of properties can lead to more effective and long-lasting hydration of certain tissues (inflamed skin, dry eye corneal surface, etc.

View Article and Find Full Text PDF

Cascade reactions of -carbonyl-substituted benzonitriles with ((chloromethyl)sulfonyl)benzenes as pronucleophiles led to new isoindolin-1-ones with a tetrasubstituted C-3 position or to ()-3-(sulfonyl-methylene)isoindolin-1-ones. The reactions start from readily available materials, are carried out under mild conditions, and do not require metal catalysis. Promoted only by the cheap and environmentally benign KCO as the base, up to six elemental steps can be combined in a single pot.

View Article and Find Full Text PDF

The notion of the electric dipole polarizability density function of atoms and molecules has been considered. The current density induced by the time derivative of the electric field of monochromatic light allows for a new definition of the electric dipole polarizability density, which is translationally invariant. This translational invariance provides the physical meaning that was lacking in previous defined polarizability densities.

View Article and Find Full Text PDF

The electric dipole-magnetic dipole polarizability tensor κ', introduced to interpret the optical activity of chiral molecules, has been expressed in terms of a series of density functions kαβ', which can be integrated all over the three-dimensional space to evaluate components καβ' and trace καα'. A computational approach to kαβ', based on frequency-dependent electronic current densities induced by monochromatic light shining on a probe molecule, has been developed. The dependence of kαβ' on the origin of the coordinate system has been investigated in connection with the corresponding change of καβ'.

View Article and Find Full Text PDF

Off-diagonal hypervirial relationships, combined with quantum mechanical sum rules of charge-current conservation, offer a way to test electronic excited-state transition energies and moments, which does not need any external reference. A number of fundamental relationships were recast into absolute deviations from zero, which have been used to assess the performance of some popular DFT functionals. Extended TD-DFT calculations have been carried out for a pool of molecules chosen for this purpose, adopting a large basis set to ensure high quality results.

View Article and Find Full Text PDF

We present SYSMOIC, a program package for the calculation of the origin-independent current density induced at first order by an external magnetic field in planar and nonplanar molecular systems. Origin independence is obtained adopting the continuous transformation of the origin of the current density method, implemented at both density functional theory (DFT) and Hartree-Fock (HF) levels. Expansion coefficients for perturbed and unperturbed molecular orbitals, over basis sets containing up to m-type Gaussian functions, can be calculated by the package itself or obtained from a Gaussian calculation.

View Article and Find Full Text PDF

The proton NMR magnetic shieldings of the recently synthesized isomers of methylene-bridged [6]cycloparaphenylene (MB[6]CPP) and [12]cyclophenacene hide in themselves the effect of a global paratropic current around the nanobelts, which is induced by a magnetic field parallel to the main symmetry axis of the molecules. The effect is particularly pronounced for the methylene protons of MB[6]CPP, especially for those facing inside the nanobelt. The small experimental chemical shift difference of only 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session6e2uc60i8df56ds4606jokiasbe610fp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once