Publications by authors named "Francesco Di Nezio"

Article Synopsis
  • Isolating microorganisms for lab cultivation helps us understand microbial ecology better, but lab conditions force them to adapt differently than they do in nature.
  • Using advanced techniques, researchers studied the motility and adaptive traits of Chromatium okenii, a sulfur bacterium, showing how they transitioned from being free-swimming in nature to becoming more attached to surfaces in the lab.
  • Their findings reveal that phenotypic changes during domestication result in reduced motility and increased surface attachment, highlighting a trade-off between adaptations for lab life versus natural environments.
View Article and Find Full Text PDF

Introduction: Bioconvection, a phenomenon characterized by the collective upward swimming of motile microorganisms, has mainly been investigated within controlled laboratory settings, leaving a knowledge gap regarding its ecological implications in natural aquatic environments. This study aims to address this question by investigating the influence of bioconvection on the eco-physiology of the anoxygenic phototrophic sulfur bacteria community of meromictic Lake Cadagno.

Methods: Here we comprehensively explore its effects by comparing the physicochemical profiles of the water column and the physiological traits of the main populations of the bacterial layer (BL).

View Article and Find Full Text PDF

Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis.

View Article and Find Full Text PDF