Publications by authors named "Francesco Contino"

Sustainable energy production, inherently transient and non-uniformly distributed around the world, requires the rapid development of sustainable energy storage technologies. Recently, pure iron powder was proposed as a high-energy density carrier. While promising, challenges are faced, such as nanoparticle emissions, micro-explosions or cavitation.

View Article and Find Full Text PDF

In this paper, we propose a multi-RREH (Remote Renewable Energy Hub) based optimization framework. This framework allows a valorization of CO using carbon capture technologies. This valorization is grounded on the idea that CO gathered from the atmosphere or post combustion can be combined with hydrogen to produce synthetic methane.

View Article and Find Full Text PDF

The current centralized configuration of the ammonia industry makes the production of nitrogen fertilizers susceptible to the volatility of fossil fuel prices and involves complex supply chains with long-distance transport costs. An alternative consists of on-site decentralized ammonia production using small modular technologies, such as electric Haber-Bosch or electrocatalytic reduction. Here we evaluate the cost-competitiveness of producing low-carbon ammonia at the farm scale, from a solar agrivoltaic system, or using electricity from the grid, within a novel global fertilizer industry.

View Article and Find Full Text PDF

Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production, however, this poses technical, economic, and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability.

View Article and Find Full Text PDF

Despite the considerable uncertainty in predicting critical parameters of renewable energy systems, the uncertainty during system design is often marginally addressed and consistently underestimated. Therefore, the resulting designs are fragile, with suboptimal performances when reality deviates significantly from the predicted scenarios. To address this limitation, we propose an antifragile design optimization framework that redefines the indicator to optimize variability and introduces an antifragility indicator.

View Article and Find Full Text PDF

Planning the defossilization of energy systems while maintaining access to abundant primary energy resources is a non-trivial multi-objective problem encompassing economic, technical, environmental, and social aspects. However, most long-term policies consider the cost of the system as the leading indicator in the energy system models to decrease the carbon footprint. This paper is the first to develop a novel approach by adding a surrogate indicator for the social and economic aspects, the (EROI), in a whole-energy system optimization model.

View Article and Find Full Text PDF

The current paper focuses on the numerical simulation of the Delft jet in hot co-flow (DJHC) burner, fed with natural gas and biogas, using the eddy dissipation concept (EDC) model with dynamic chemistry reduction and tabulation, i.e., tabulated dynamic adaptive chemistry (TDAC).

View Article and Find Full Text PDF