Bacterial pilin nanowires are protein complexes, suggested to possess electroactive capabilities forming part of the cells' bioenergetic programming. Their role is thought to be linked to facilitating electron transfer between cells and the external environment to permit metabolism and cell-to-cell communication. There is a significant debate, with varying hypotheses as to the nature of the proteins currently lying between type-IV pilin-based nanowires and polymerised cytochrome-based filaments.
View Article and Find Full Text PDFLiving organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiotic polymers. Ultimately, the synthesis of these polymers in situ might aid the coupling of organisms with synthetic matrices, and the generation of biohybrids or engineered living materials. The key step in biohybrid materials preparation is to harness the relevant biological pathways to produce synthetic polymers with predictable molar masses and defined architectures under ambient conditions.
View Article and Find Full Text PDFThe use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. The conjugation of mAbs to nanoparticles has been broadly exploited to improve the targeting efficiency of drug nanocarriers taking advantage of high binding efficacy and target selectivity of antibodies for specific cell receptors. However, the therapeutic implications of nanoconjugation have been poorly considered.
View Article and Find Full Text PDF