This protocol provides specific details on how to perform Hi-C, the genome-wide version of Chromosome Conformation Capture (3C) followed by high-throughput sequencing, in Drosophila embryos. Hi-C provides a genome-wide population-averaged snapshot of the 3D genome organization within nuclei. In Hi-C, formaldehyde-cross-linked chromatin is enzymatically digested using restriction enzymes; digested fragments are biotinylated and subjected to proximity ligation; ligated fragments are purified using streptavidin followed by paired-end sequencing.
View Article and Find Full Text PDFCUT&Tag is a method to map the genome-wide distribution of histone modifications and some chromatin-associated proteins. CUT&Tag relies on antibody-targeted chromatin tagmentation and can easily be scaled up or automatized. This protocol provides clear experimental guidelines and helpful considerations when planning and executing CUT&Tag experiments.
View Article and Find Full Text PDFZygotic genome activation (ZGA) is a crucial step of embryonic development. So far, little is known about the role of chromatin factors during this process. Here, we used an in vivo RNA interference reverse genetic screen to identify chromatin factors necessary for embryonic development in .
View Article and Find Full Text PDFDuring embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist.
View Article and Find Full Text PDF