Manipulating underwater pressure waves is crucial for marine exploration, as electromagnetic signals are strongly absorbed in water. However, the multi-path phenomenon complicates the accurate capture of acoustic waves by receivers. Although graded index lenses, based on metamaterials with smoothly varying properties, successfully focus pressure waves, they tend to have high directivity, which hinders practical application.
View Article and Find Full Text PDFObjective Eulerian coherent structures (OECSs) and instantaneous Lyapunov exponents (iLEs) govern short-term material transport in fluid flows as Lagrangian coherent structures and the finite-time Lyapunov exponent do over longer times. Attracting OECSs and iLEs reveal short-time attractors and are computable from the Eulerian rate-of-strain tensor. Here, we devise for the first time an optimal control strategy to create short-time attractors in compressible, viscosity-dominated active nematic flows.
View Article and Find Full Text PDFHuman-robot interaction is a rapidly developing field and robots have been taking more active roles in our daily lives. Patient care is one of the fields in which robots are becoming more present, especially for people with disabilities. People with neurodegenerative disorders might not consciously or voluntarily produce movements other than those involving the eyes or eyelids.
View Article and Find Full Text PDFOver the last few years, exoskeletons have been demonstrated to be useful tools for supporting the execution of neuromotor rehabilitation sessions. However, they are still not very present in hospitals. Therapists tend to be wary of this type of technology, thus reducing its acceptability and, therefore, its everyday use in clinical practice.
View Article and Find Full Text PDFRehabilitation exoskeletons can supplement therapist-based training allowing post-stroke patients to perform functional, high-dosage, repetitive exercises. The use of robotic devices allows providing intense rehabilitation sessions and permits clinicians to personalize the therapy according to the patient's need. In this work, we propose an upper-limb rehabilitation system developed within the AGREE project.
View Article and Find Full Text PDFIntroduction: Soft robotic wearable devices, referred to as exosuits, can be a valid alternative to rigid exoskeletons when it comes to daily upper limb support. Indeed, their inherent flexibility improves comfort, usability, and portability while not constraining the user's natural degrees of freedom. This review is meant to guide the reader in understanding the current approaches across all design and production steps that might be exploited when developing an upper limb robotic exosuit.
View Article and Find Full Text PDFService robotics is a fast-developing sector, requiring embedded intelligence into robotic platforms to interact with the humans and the surrounding environment. One of the main challenges in the field is robust and versatile manipulation in everyday life activities. An appealing opportunity is to exploit compliant end-effectors to address the manipulation of deformable objects.
View Article and Find Full Text PDFBackground: Appropriate training modalities for post-stroke upper-limb rehabilitation are key features for effective recovery after the acute event. This study presents a cooperative control framework that promotes compliant motion and implements a variety of high-level rehabilitation modalities with a unified low-level explicit impedance control law. The core idea is that we can change the haptic behavior perceived by a human when interacting with the rehabilitation robot by tuning three impedance control parameters.
View Article and Find Full Text PDFTechnology-supported rehabilitation therapy for neurological patients has gained increasing interest since the last decades. The literature agrees that the goal of robots should be to induce motor plasticity in subjects undergoing rehabilitation treatment by providing the patients with repetitive, intensive, and task-oriented treatment. As a key element, robot controllers should adapt to patients' status and recovery stage.
View Article and Find Full Text PDFIn this paper, we propose a novel design and optimization environment for inertial MEMS devices based on a computationally efficient schematization of the structure at the a device level. This allows us to obtain a flexible and efficient design optimization tool, particularly useful for rapid device prototyping. The presented design environment--handles the parametric generation of the structure geometry, the simulation of its dynamic behavior, and a gradient-based layout optimization.
View Article and Find Full Text PDFWe experimentally demonstrate temporal pumping of elastic waves in an electromechanical waveguide. Temporal pumping exploits a virtual dimension mapped to time, enabling the generation and control of edge states, typical of two-dimensional systems, in a one-dimensional waveguide. We show experimentally that the temporal modulation of the stiffness drives the transfer of edge states from one boundary of the waveguide to the other.
View Article and Find Full Text PDFThe design of innovative metamaterials with robust and reliable performances is attracting increasing interest in the scientific community because of their unique properties and for their unexplored potential. In particular, dynamical properties of periodic structures are widely studied specifically for their bandgap opening characteristic, which enables the design of structures with unprecedented dynamical behaviour. In the present work an ultra-wide three-dimensional bandgap is presented, with extremely low frequency range of operation.
View Article and Find Full Text PDFPeople with neuromuscular diseases such as muscular dystrophy experience a distributed and evolutive weakness in the whole body. Recent technological developments have changed the daily life of disabled people strongly improving the perceived quality of life, mostly concentrating on powered wheelchairs, so to assure autonomous mobility and respiratory assistance, essential for survival. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing them of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible.
View Article and Find Full Text PDF