The atmospheres of gaseous giant exoplanets orbiting close to their parent stars (hot Jupiters) have been probed for nearly two decades. They allow us to investigate the chemical and physical properties of planetary atmospheres under extreme irradiation conditions. Previous observations of hot Jupiters as they transit in front of their host stars have revealed the frequent presence of water vapour and carbon monoxide in their atmospheres; this has been studied in terms of scaled solar composition under the usual assumption of chemical equilibrium.
View Article and Find Full Text PDFUltrahot giant exoplanets receive thousands of times Earth's insolation. Their high-temperature atmospheres (greater than 2,000 kelvin) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by atomic species and much hotter than nightsides.
View Article and Find Full Text PDFPLAnetary Transits and Oscillations of stars (PLATO) is a medium sized mission (M3) selected by the European Space Agency (ESA) for launch in 2026. The PLATO payload includes 26 telescopes all based on a six-element refractive optical scheme. Some components will be eventually manufactured by S-FPL51, N-KZFS11 and S-FTM16 glass whose radiation resistance is partially or totally unknown.
View Article and Find Full Text PDF