Background: The study explores the challenges of handling multiblock data of different natures (process and NIR sensors) for on-line quality prediction in a full-scale plant scenario, namely a plant operating in continuous on an industrial scale and producing different grade Acrylonitrile Butadiene Styrene (ABS) products. This environment is an ideal scenario to evaluate the use of multiblock data analysis methods, which can enhance data interpretation, visualization, and predictive performances. In particular, a novel multiblock extension of Locally Weighted PLS has been proposed by the authors, namely Locally Weighted Multiblock Partial Least Squares (LW-MB-PLS).
View Article and Find Full Text PDFNeuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts.
View Article and Find Full Text PDFPetrochemical companies aim at assessing final product quality in real time, in order to rapidly deal with possible plant faults and to reduce chemical wastes and staff effort resulting from the many laboratory analyses performed every day. In order to answer these needs, the main purpose of the current work is to explore the feasibility of multiblock regression methods to build real-time monitoring models for the prediction of two quality properties of Acrylonitrile-Butadiene-Styrene (ABS) by fusing near-infrared (NIR) and process sensors data. Data come from a production plant, which operates continuously, and where four NIR probes are installed on-line, in addition to standard process sensors.
View Article and Find Full Text PDFProcess analytical technology and multivariate process monitoring are nowadays the most effective approaches to achieve real-time quality monitoring/control in production. However, their use is not yet a common practice, and industries benefit much less than they could from the outcome of the hundreds of sensors that constantly monitor production in industrial plants. The huge amount of sensor data collected are still mostly used to produce univariate control charts, monitoring one compartment at a time, and the product quality variables are generally used to monitor production, despite their low frequency (offline measurements at analytical laboratory), which is not suitable for real-time monitoring.
View Article and Find Full Text PDF