In the ever-evolving landscape of modern agriculture, the integration of advanced technologies has become indispensable for optimizing crop management and ensuring sustainable food production. This paper presents the development and implementation of a real-time AI-assisted push-broom hyperspectral system for plant identification. The push-broom hyperspectral technique, coupled with artificial intelligence, offers unprecedented detail and accuracy in crop monitoring.
View Article and Find Full Text PDFPoly(lactic) acid (PLA) is a bio-compatible polymer widely used in additive manufacturing, and in the form of cellular foam it shows excellent mechanical and piezoelectric properties. This type of structure can be easily 3D-printed by Fusion Deposition Modelling (FDM) with commercially available composite filaments. In this work, we present mechanical and electrical investigations on 3D-printed low-cost and eco-friendly foamed PLA.
View Article and Find Full Text PDFThe fluid-structure interactions between flexible fibers and viscous flows play an essential role in various biological phenomena, medical problems, and industrial processes. Of particular interest is the case of particles freely transported in time-dependent flows. This work elucidates the dynamics and morphologies of actin filaments under oscillatory shear flows by combining microfluidic experiments, numerical simulations, and theoretical modeling.
View Article and Find Full Text PDFWe investigate the origin of yield stress aging in semidense, saline, and turbid suspensions in which structural evolution is rapidly arrested by the formation of thermally irreversible roll-resisting interparticle contacts. By performing optical tweezer three-point bending tests on particle rods, we show that these contacts yield by overcoming a rolling threshold, the critical bending moment of which grows logarithmically with time. We demonstrate that this time-dependent contact-scale rolling threshold controls the suspension yield stress and its aging kinetics.
View Article and Find Full Text PDFThe ageing behaviour of dense suspensions or pastes at rest is almost exclusively attributed to structural dynamics. Here, we identify another ageing process, contact-controlled ageing, consisting of the progressive stiffening of solid-solid contacts of an arrested colloidal suspension. By combining rheometry, confocal microscopy and particle-scale mechanical tests using laser tweezers, we demonstrate that this process governs the shear-modulus ageing of dense aqueous silica and polymer latex suspensions at moderate ionic strengths.
View Article and Find Full Text PDF