Efficient genome editing by using CRISPR technologies requires simultaneous and efficient delivery of multiple genetically encoded components to mammalian cells. Amongst all editing approaches, prime editing (PE) has the unique potential to perform seamless genome rewriting, in the absence of DNA double-strand breaks (DSBs). The cargo capacity required for efficient PE delivery to mammalian cells stands at odd with the limited packaging capacity of traditional viral delivery vectors.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is characterised by its aggressiveness and resistance to chemotherapy, demanding the development of effective strategies against its unique characteristics. Derived from lapacho tree bark, β-lapachone (β-LP) selectively targets cancer cells with elevated levels of the detoxifying enzyme NQO1. Hydroxytyrosol (HT) is a phenolic compound derived from olive trees with important anticancer properties that include the inhibition of cancer stem cells (CSCs) and metastatic features in TNBC, as well as relevant antioxidant activities by mechanisms such as the induction of NQO1.
View Article and Find Full Text PDFCRISPR-based DNA editing technologies enable rapid and accessible genome engineering of eukaryotic cells. However, the delivery of genetically encoded CRISPR components remains challenging and sustained Cas9 expression correlates with higher off-target activities, which can be reduced via Cas9-protein delivery. Here we demonstrate that baculovirus, alongside its DNA cargo, can be used to package and deliver proteins to human cells.
View Article and Find Full Text PDFEarly during preimplantation development and in heterogeneous mouse embryonic stem cells (mESC) culture, pluripotent cells are specified towards either the primed epiblast or the primitive endoderm (PE) lineage. Canonical Wnt signaling is crucial for safeguarding naive pluripotency and embryo implantation, yet the role and relevance of canonical Wnt inhibition during early mammalian development remains unknown. Here, we demonstrate that transcriptional repression exerted by Wnt/TCF7L1 promotes PE differentiation of mESCs and in preimplantation inner cell mass.
View Article and Find Full Text PDFThe baculovirus expression vector system (BEVS) delivers high yield heterologous protein expression and is widely used in academic and industrial R&D. The proteins produced enable many applications including structure/function analysis, drug screening and manufacture of protein therapeutics. Vital cellular functions are controlled by multi-protein complexes, MultiBac, a BEVS specifically designed for heterologous multigene delivery and expression, has unlocked many of these machines to atomic resolution studies.
View Article and Find Full Text PDFThe Wnt/β-catenin signaling pathway is a key regulator of embryonic stem cell (ESC) self-renewal and differentiation. Constitutive activation of this pathway has been shown to increase mouse ESC (mESC) self-renewal and pluripotency gene expression. In this study, we generated a novel β-catenin knockout model in mESCs to delete putatively functional N-terminally truncated isoforms observed in previous knockout models.
View Article and Find Full Text PDFDNA delivery is at the forefront of current research efforts in gene therapy and synthetic biology. Viral vectors have traditionally dominated the field; however, nonviral delivery systems are increasingly gaining traction. Baculoviruses are arthropod-specific viruses that can be easily engineered and repurposed to accommodate and deliver large sequences of exogenous DNA into mammalian cells, tissues, or ultimately organisms.
View Article and Find Full Text PDFCellular systems have evolved numerous mechanisms to adapt to environmental stimuli, underpinned by dynamic patterns of gene expression. In addition to gene transcription regulation, modulation of protein levels, dynamics and localization are essential checkpoints governing cell functions. The introduction of inducible promoters has allowed gene expression control using orthogonal molecules, facilitating its rapid and reversible manipulation to study gene function.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) are pluripotent and can differentiate into cells belonging to the three germ layers of the embryo. However, mESC pluripotency and genome stability can be compromised in prolonged in vitro culture conditions. Several factors control mESC pluripotency, including Wnt/β-catenin signaling pathway, which is essential for mESC differentiation and proliferation.
View Article and Find Full Text PDFGene networks and signaling pathways display complex topologies and, as a result, complex nonlinear behaviors. Accumulating evidence shows that both static (concentration) and dynamical (rate-of-change) features of transcription factors, ligands and environmental stimuli control downstream processes and ultimately cellular functions. Currently, however, methods to generate stimuli with the desired features to probe cell response are still lacking.
View Article and Find Full Text PDFCRISPR/dCas9-based labeling has allowed direct visualization of genomic regions in living cells. However, poor labeling efficiency and signal-to-background ratio have limited its application to visualize genome organization using super-resolution microscopy. We developed (Po)STAC (Polycistronic SunTAg modified CRISPR) by combining CRISPR/dCas9 with SunTag labeling and polycistronic vectors.
View Article and Find Full Text PDFImprinted genes control several cellular and metabolic processes in embryonic and adult tissues. In particular, paternally expressed gene-3 (Peg3) is active in the adult stem cell population and during muscle and neuronal lineage development. Here we have investigated the role of Peg3 in mouse embryonic stem cells (ESCs) and during the process of somatic cell reprogramming towards pluripotency.
View Article and Find Full Text PDFUnderstanding the mechanisms regulating cell cycle, proliferation and potency of pluripotent stem cells guarantees their safe use in the clinic. Embryonic stem cells (ESCs) present a fast cell cycle with a short G1 phase. This is due to the lack of expression of cell cycle inhibitors, which ultimately determines naïve pluripotency by holding back differentiation.
View Article and Find Full Text PDFHomotypic and heterotypic cell-to-cell fusion are key processes during development and tissue regeneration. Nevertheless, aberrant cell fusion can contribute to tumour initiation and metastasis. Additionally, a form of cell-in-cell structure called entosis has been observed in several human tumours.
View Article and Find Full Text PDFCyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs) into iPSCs.
View Article and Find Full Text PDF