Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1.
View Article and Find Full Text PDFIntegrated HIV-1 DNA persists in cells of people living with HIV during antiretroviral treatment, but its quantification is hindered by its rarity. Here, we present an optimized protocol to evaluate "shock and kill" therapeutic strategies, including both the latency reactivation ("shock") and elimination of infected cells ("kill") stages. We describe steps for the sequential use of nested PCR-based assays and viability sorting to allow for scalable and rapid screening of candidate therapeutics in patient-derived blood cells.
View Article and Find Full Text PDFThe limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein.
View Article and Find Full Text PDFHIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect.
View Article and Find Full Text PDFT-follicular helper (Tfh) cells, co-expressing PD-1 and TIGIT, serve as a major cell reservoir for HIV-1 and are responsible for active and persistent HIV-1 transcription after prolonged antiretroviral therapy (ART). However, the precise mechanisms regulating HIV-1 transcription in lymph nodes (LNs) remain unclear. In the present study, we investigated the potential role of immune checkpoint (IC)/IC-Ligand (IC-L) interactions on HIV-1 transcription in LN-microenvironment.
View Article and Find Full Text PDFHIV persists in latently infected CD4 T cells during antiretroviral therapy (ART). Immune checkpoint molecules, including PD-1, are preferentially expressed at the surface of persistently infected cells. However, whether PD-1 plays a functional role in HIV latency and reservoir persistence remains unknown.
View Article and Find Full Text PDFThe innate and adaptive immune systems fail to control HCV infection in the majority of infected individuals. HCV is an ssRNA virus, which suggests a role for Toll-like receptors (TLRs) 7 and 8 in initiating the anti-viral response. Here we demonstrate that HCV genomic RNA harbours specific sequences that initiate an anti-HCV immune response through TLR7 and TLR8 in various antigen presenting cells.
View Article and Find Full Text PDFThe mechanisms responsible for the persistence of HIV-1 after many years of suppressive antiretroviral therapy (ART) have been only partially elucidated. Most of the studies investigating HIV-1 persistence have been performed with blood, although it is well known that germinal centers (GCs) within lymph nodes (LNs) serve as primary sites for HIV-1 replication. We sought to identify the memory CD4 T cell populations in blood and LNs that are responsible for the production of replication-competent and infectious HIV-1, as well as for active and persistent virus transcription in ART-treated (for 1.
View Article and Find Full Text PDFBackground: Quantifying latently infected cells is critical to evaluate the efficacy of therapeutic strategies aimed at reducing the size of the long-lived viral reservoir, but the low frequency of these cells makes this very challenging.
Methods: We developed TILDA (Tat/rev Induced Limiting Dilution Assay) to measure the frequency of cells with inducible multiply-spliced HIV RNA, as these transcripts are usually absent in latently infected cells but induced upon viral reactivation. TILDA requires less than a million cells, does not require RNA extraction and can be completed in two days.
Immediate-early host-virus interactions that occur during the first weeks after HIV infection have a major impact on disease progression. The mechanisms underlying the failure of HIV-specific CD8 T-cell response to persist and control viral replication early in infection are yet to be characterized. In this study, we performed a thorough phenotypic, gene expression and functional analysis to compare HIV-specific CD8 T cells in acutely and chronically infected subjects.
View Article and Find Full Text PDF