Publications by authors named "Franceschetti A"

Background: High-fat diets (HFDs) have been associated with an increased risk of pancreatic cancer. In contrast, ketogenic diets (KDs) have been shown to display anti-tumor characteristics. The objective of this work was to evaluate the efficacy of a KD on late-stage pancreatic carcinogenesis in a genetically modified mouse model of pancreatic cancer [LSL-; -Cre (KC) mice], as well as its liver safety, and to compare it to that of an HFD.

View Article and Find Full Text PDF

Purpose: Proper monitoring and management of chemotherapy-induced nausea and vomiting (CINV) with antiemetics is crucial for cancer patients. This study aimed to evaluate the use of antiemetics for the treatment of highly emetogenic chemotherapy (HEC) including carboplatin in the real-world setting in Spain.

Methods: A representative panel of cancer specialists was asked to collect information about the antiemetic treatments provided to patients receiving chemotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • Antiemetic guidelines suggest using a combination of neurokinin-1 receptor antagonist, 5-HT receptor antagonist, and dexamethasone for patients on highly emetogenic chemotherapy to manage nausea and vomiting effectively.
  • A study analyzed data from over 45,000 patients across five European countries, finding that only a minority received the recommended combination therapy for nausea prevention related to chemotherapy.
  • The results indicated poor adherence to guidelines, as about 12% of treatments had no antiemetic prescribed, and many physicians misjudged the emetic risk associated with specific chemotherapy regimens.
View Article and Find Full Text PDF

Objectives: To assess the impact of psoriasis on health-related quality of life (HRQoL).

Methods: An ethnographic study of patients with moderate to severe psoriasis was conducted in the US, France, Germany, Italy, Spain, UK, Brazil, and Canada to explore patients' views on treatment and the impact of psoriasis on HRQoL. Anthropologists and ethnographers spent a minimum of 5.

View Article and Find Full Text PDF

CdTe/CdSe core/shell nanocrystals are the prototypical example of type-II nanoheterostructures, in which the electron and the hole wave functions are localized in different parts of the nanostructure. As the thickness of the CdSe shell increases above a few monolayers, the spectroscopic properties of such nanocrystals change dramatically, reflecting the underlying type-I → type-II transition. For example, the exciton Stokes shift and radiative lifetime increase, while the decreasing biexciton binding energy changes sign from positive to negative.

View Article and Find Full Text PDF

SIR age-structured models are very often used as a basic model of epidemic spread. Yet, their behaviour, under generic assumptions on contact rates between different age classes, is not completely known, and, in the most detailed analysis so far, Inaba (1990) was able to prove uniqueness of the endemic equilibrium only under a rather restrictive condition. Here, we show an example in the form of a 3x3 contact matrix in which multiple non-trivial steady states exist.

View Article and Find Full Text PDF

Many-body Green function analysis and first-order perturbation theory are used to quantify the influence of size, surface reconstruction, and surface treatment on exciton transport between small silicon quantum dots. Competing radiative processes are also considered in order to determine how exciton transport efficiency is influenced. The analysis shows that quantum confinement causes small (~1 nm) Si quantum dots to exhibit exciton transport efficiencies far exceeding that of their larger counterparts for the same center-to-center separation.

View Article and Find Full Text PDF

The multiplication rates of hot carriers in CdSe quantum dots are quantified using an atomistic pseudopotential approach and first-order perturbation theory. We consider both the case of an individual carrier (electron or hole) decaying into a trion and the case of an electron-hole pair decaying into a biexciton. The dependence on quantum dot volume of multiplication rate, density of final states, and effective Coulomb interaction are determined.

View Article and Find Full Text PDF

Excitons in quantum dots manifest a lower-energy spin-forbidden "dark" state below a spin-allowed "bright" state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives.

View Article and Find Full Text PDF

Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions.

View Article and Find Full Text PDF

Efficient multiple-exciton generation (MEG) in semiconductor quantum dots has been recently reported. The MEG efficiency has so far been evaluated assuming that the change (bleaching) of the absorption spectrum due to MEG is linearly proportional to the number of excitons N(X). Here, we critically examine this assumption using atomistic pseudopotential calculations for colloidal CdSe nanocrystals.

View Article and Find Full Text PDF

In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (< or =1 ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels.

View Article and Find Full Text PDF

We consider a SIR age-structured model with immigration of infectives in all epidemiological compartments; the population is assumed to be in demographic equilibrium between below-replacement fertility and immigration; the spread of the infection occurs through a general age-dependent kernel. We analyse the equations for steady states; because of immigration of infectives a steady state with a positive density of infectives always exists; however, a quasi-threshold theorem is proved, in the sense that, below the threshold, the density of infectives is close to 0, while it is away from 0, above the threshold; furthermore, conditions that guarantee uniqueness of steady states are obtained. Finally, we present some numerical examples, inspired by the Italian demographic situation, that illustrate the threshold-like behaviour, and other features of the stationary solutions and of the transient.

View Article and Find Full Text PDF

The band-edge exciton fine structure of wurtzite CdSe nanocrystals is investigated by a plane-wave pseudopotential method that includes spin-orbit coupling, screened electron-hole Coulomb interactions, and exchange interactions. Large-scale, systematic simulations have been carried out on quantum dots, nanorods, nanowires, and nanodisks. The size and shape dependence of the exciton fine structure is explored over the whole diameter-length configuration space and is explained by the interplay of quantum confinement, intrinsic crystal-field splitting, and electron-hole exchange interactions.

View Article and Find Full Text PDF

The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement.

View Article and Find Full Text PDF

The Curie temperature T(C) of ferromagnetic semiconductor alloys depends not only on the alloy composition, but also on the spatial configuration of the magnetic impurities. Here we use a set of first-principle-calculated Curie temperatures to uncover-via a statistical, 'data mining' approach-the rules that govern the dependence of T(C) on the configuration of Mn substitutional impurities in GaAs. We find that T(C) is lowered (raised) when the average number of first (third and fourth) nearest-neighbour Mn pairs increases, suggesting simple atom-by-atom strategies to achieve high T(C) in (Ga, Mn)As alloys.

View Article and Find Full Text PDF

Unlike the Si-SiO2 interface, the SiC-SiO2 interface has large defect densities. Though nitridation has been shown to reduce the defect density, the effect of H remains an open issue. Here we combine experimental data and the results of first-principles calculations to demonstrate that a Si-C-O bonded interlayer with correlated threefold-coordinated C atoms accounts for the observed defect states, for passivation by N and atomic H, and for the nature of residual defects.

View Article and Find Full Text PDF

PbSe is a pseudo-II-VI material distinguished from ordinary II-VI's (e.g., CdSe, ZnSe) by having both its valence band maximum (VBM) and its conduction band minimum (CBM) located at the fourfold-degenerate L-point in the Brillouin zone.

View Article and Find Full Text PDF

The efficiency of conventional solar cells is limited because the excess energy of absorbed photons converts to heat instead of producing electron-hole pairs. Recently, efficient carrier multiplication has been observed in semiconductor quantum dots. In this process, a single, high-energy photon generates multiple electron-hole pairs.

View Article and Find Full Text PDF

The transition temperature TC of multicomponent systems--ferromagnetic, superconducting, or ferroelectric--depends strongly on the atomic arrangement, but an exhaustive search of all configurations for those that optimize TC is difficult, due to the astronomically large number of possibilities. Here we address this problem by parametrizing the TC of a set of approximately 50 input configurations, calculated from first principles, in terms of configuration variables ("cluster expansion"). Once established, this expansion allows us to search almost effortlessly the transition temperature of arbitrary configurations.

View Article and Find Full Text PDF

Using atomistic, semiempirical pseudopotential calculations, we show that if one assumes the simplest form of a surface state in a CdSe nanocrystal--an unpassivated surface anion site--one can explain theoretically several puzzling aspects regarding the observed temperature dependence of the radiative decay of excitons. In particular, our calculations show that the presence of surface states leads to a mixing of the dark and bright exciton states, resulting in a decrease of 3 orders of magnitude of the dark-exciton radiative lifetime. This result explains the persistence of the zero-phonon emission line at low temperature, for which thermal population of higher-energy bright-exciton states is negligible.

View Article and Find Full Text PDF

Large-scale applications of high-transition-temperature (high-T(c)) superconductors, such as their use in superconducting cables, are impeded by the fact that polycrystalline materials (the only practical option) support significantly lower current densities than single crystals. The superconducting critical current density (J(c)) across a grain boundary drops exponentially if the misorientation angle exceeds 2 degrees -7 degrees. Grain texturing reduces the average misorientation angle, but problems persist.

View Article and Find Full Text PDF