This study aimed to evaluate the effectiveness of various scoring systems in predicting in-hospital mortality for COVID-19 patients admitted to the internal medicine ward. We conducted a prospective collection of clinical data from patients admitted to the Internal Medicine Unit at Santa Maria Nuova Hospital in Florence, Italy, with confirmed pneumonia caused by SARS-CoV-2. We calculated three scoring systems: the CALL score, the PREDI-CO score, and the COVID-19 in-hospital Mortality Risk Score (COVID-19 MRS).
View Article and Find Full Text PDFBackground: The soluble urokinase Plasminogen Activator Receptor (suPAR) has been identified as a reliable marker of COVID-19 severity, helping in personalizing COVID-19 therapy. This study aims to evaluate the correlation between suPAR levels and COVID-19 severity, in relation to the traditional inflammatory markers.
Methods: Sera from 71 COVID-19 patients were tested for suPAR levels using Chorus suPAR assay (Diesse Diagnostica Senese SpA, Italy).
Metabolomics and lipidomics have been used in several studies to define the biochemical alterations induced by COVID-19 in comparison with healthy controls. Those studies highlighted the presence of a strong signature, attributable to both metabolites and lipoproteins/lipids. Here, 1H NMR spectra were acquired on EDTA-plasma from three groups of subjects: i) hospitalized COVID-19 positive patients (≤21 days from the first positive nasopharyngeal swab); ii) hospitalized COVID-19 positive patients (>21 days from the first positive nasopharyngeal swab); iii) subjects after 2-6 months from SARS-CoV-2 eradication.
View Article and Find Full Text PDFObjectives: Evaluating anti-SARS-CoV-2 antibody levels is a current priority to drive immunization, as well as to predict when a vaccine booster dose may be required and for which priority groups. The aim of our study was to investigate the kinetics of anti-SARS-CoV-2 Spike S1 protein IgG (anti-S1 IgG) antibodies and neutralizing antibodies (NAbs) in an Italian cohort of healthcare workers (HCWs), following the Pfizer/BNT162b2 mRNA vaccine, over a period of up to six months after the second dose.
Methods: We enrolled 57 HCWs, without clinical history of COVID-19 infection.
A pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading throughout the world. Though molecular diagnostic tests are the gold standard for COVID-19, serological testing is emerging as a potential surveillance tool, in addition to its complementary role in COVID-19 diagnostics. Indubitably quantitative serological testing provides greater advantages than qualitative tests but today there is still little known about serological diagnostics and what the most appropriate role quantitative tests might play.
View Article and Find Full Text PDF