Publications by authors named "Francesca V Gambacorta"

Plants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation.

View Article and Find Full Text PDF

is the dominant fermentative producer of ethanol in industry and a preferred host for production of other biofuels. That said, rewiring the metabolism of to produce other fermentation products, such as isobutanol, remains an academic challenge. Many studies report aerobic production of isobutanol, but ethanol remains a substantial by-product under these conditions due to the Crabtree effect.

View Article and Find Full Text PDF

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in . Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme.

View Article and Find Full Text PDF

Saccharomyces cerevisiae, Baker's yeast, is the industrial workhorse for producing ethanol and the subject of substantial metabolic engineering research in both industry and academia. S. cerevisiae has been used to demonstrate production of a wide range of chemical products from glucose.

View Article and Find Full Text PDF

The importance of stroma as a rich diagnostic region in tissue biopsies is growing as there is an increasing understanding that disease processes in multiple organs can affect the composition of adjacent connective tissue regions. This may be especially true in the liver, since this organ's central metabolic role exposes it to multiple disease processes. We use quantum cascade laser infrared spectroscopic imaging to study changes in the chemical status of hepatocytes and fibrotic regions of liver tissue that result from the progression of liver cirrhosis to hepatocellular carcinoma and the potentially confounding effects of diabetes mellitus.

View Article and Find Full Text PDF