Background: The development of reproducible and sensitive outcome measures has been challenging in hereditary transthyretin (ATTRv) amyloidosis. Recently, quantification of intramuscular fat by magnetic resonance imaging (MRI) has proven as a sensitive marker in patients with other genetic neuropathies. The aim of this study was to investigate the role of muscle quantitative MRI (qMRI) as an outcome measure in ATTRv.
View Article and Find Full Text PDFBackground: Myasthenia gravis (MG) is an autoimmune disease that targets acetylcholine receptor (AChR) of the neuromuscular junction. New-onset MG after SARS-CoV-2 vaccination has rarely been reported.
Case Presentation: We report about three patients who presented new-onset myasthenia gravis after receiving mRNA SARS-CoV-2 vaccination.
Quantitative muscle MRI (water-T2 and fat mapping) is being increasingly used to assess disease involvement in muscle disorders, while imaging techniques for assessment of the dynamic and elastic muscle properties have not yet been translated into clinics. In this exploratory study, we quantitatively characterized muscle deformation (strain) in patients affected by facioscapulohumeral muscular dystrophy (FSHD), a prevalent muscular dystrophy, by applying dynamic MRI synchronized with neuromuscular electrical stimulation (NMES). We evaluated the quadriceps muscles in 34 ambulatory patients and 13 healthy controls, at 6-to 12-month time intervals.
View Article and Find Full Text PDFPurpose: Intracerebral hemorrhage (ICH) is an uncommon but deadly event in patients with COVID-19 and its imaging features remain poorly characterized. We aimed to describe the clinical and imaging features of COVID-19-associated ICH.
Methods: Multicenter, retrospective, case-control analysis comparing ICH in COVID-19 patients (COV19 +) versus controls without COVID-19 (COV19 -).
Biomarkers of disease progression and outcome measures are still lacking for patients with amyotrophic lateral sclerosis (ALS). Muscle MRI can be a promising candidate to track longitudinal changes and to predict response to the therapy in clinical trials. Our aim is to apply quantitative muscle MRI in the evaluation of disease progression, focusing on thigh and leg muscles of patients with ALS, and to explore the correlation between radiological and clinical scores.
View Article and Find Full Text PDFObjective: In this study we address the automatic segmentation of selected muscles of the thigh and leg through a supervised deep learning approach.
Material And Methods: The application of quantitative imaging in neuromuscular diseases requires the availability of regions of interest (ROI) drawn on muscles to extract quantitative parameters. Up to now, manual drawing of ROIs has been considered the gold standard in clinical studies, with no clear and universally accepted standardized procedure for segmentation.
Purpose: To assess the reproducibility of a manual muscle MRI segmentation method that follows a specific set of recommendations developed in our center.
Materials And Methods: Nine healthy volunteers underwent a muscle MRI examination that included a TSE T2 sequence of the thighs. Muscle segmentation was performed by three operators: an expert operator (OP1) with 3 years of experience and two radiology residents (OP2 and 3) who were both given basic segmentation instructions, whereas only OP2 underwent additional supervised training from OP1.
Nusinersen is a recent promising therapy approved for the treatment of spinal muscular atrophy (SMA), a rare disease characterized by the degeneration of alpha motor neurons (αMN) in the spinal cord (SC) leading to progressive muscle atrophy and dysfunction. Muscle and cervical SC quantitative magnetic resonance imaging (qMRI) has never been used to monitor drug treatment in SMA. The aim of this pilot study is to investigate whether qMRI can provide useful biomarkers for monitoring treatment efficacy in SMA.
View Article and Find Full Text PDFImaging has become a valuable tool in the assessment of neuromuscular diseases, and, specifically, quantitative MR imaging provides robust biomarkers for the monitoring of disease progression. Quantitative evaluation of fat infiltration and quantification of the T2 values of the muscular tissue's water component (wT2) are two of the most essential indicators currently used. As each voxel of the image can contain both water and fat, a two-component model for the estimation of wT2 must be used.
View Article and Find Full Text PDFPurpose: Quantitative MRI (qMRI) plays a crucial role for assessing disease progression and treatment response in neuromuscular disorders, but the required MRI sequences are not routinely available in every center. The aim of this study was to predict qMRI values of water T2 (wT2) and fat fraction (FF) from conventional MRI, using texture analysis and machine learning.
Method: Fourteen patients affected by Facioscapulohumeral muscular dystrophy were imaged at both thighs using conventional and quantitative MR sequences.
Objective: The aim of this study was to develop and validate an MRI protocol based on a variable echo time (vTE) sensitive to the short T2* components of the sciatic nerve.
Materials And Methods: 15 healthy subjects (M/F: 9/6; age: 21-62) were scanned at 3T targeting the sciatic nerve at the thigh bilaterally, using a dual echo variable echo time (vTE) sequence (based on a spoiled gradient echo acquisition) with echo times of 0.98/5.