Publications by authors named "Francesca Rondinelli"

In the present work we performed a combined experimental and computational study on the interaction of the natural antimalarial endoperoxide plakortin and its synthetic analogue 4a with heme. Obtained results indicate that the studied compounds produce reactive carbon radical species after being reductively activated by heme. In particular, similarly to artemisinin, the formation of radicals prone to inter-molecular reactions should represent the key event responsible for Plasmodium death.

View Article and Find Full Text PDF
Article Synopsis
  • An integrated computational approach combining molecular dynamics, semi-empirical, DFT calculations, and dynamic docking studies was used to investigate new antimalarial agents derived from marine compounds plakortin and aplidinone.
  • The study found that these agents interact with Fe(II) from heme, leading to the formation of radical species, which are believed to cause toxicity and ultimately lead to the death of the Plasmodium parasite.
  • The chapter also outlines the specific three-dimensional structural features that are crucial for the efficacy of these new antimalarial compounds.
View Article and Find Full Text PDF

For the optimization of the plakortin pharmacophore, we recently proposed a straightforward synthesis of 4-carbomethoxy-3-methoxy-1,2-dioxanes as potential antimalarial drug candidates. Herein we report the chemoselective reduction of the 4-carbomethoxy group which has allowed us to prepare in good yields twenty-four new endoperoxides carrying either the hydroxymethyl or the methoxymethyl group on C4 in various stereochemical arrangements with respect to the alkyl groups on C3 and C6 (the endoperoxide carbons). Some of these compounds showed promising in vitro antimalarial activities, both against chloroquine-resistant (CQ-R) and susceptible (CQ-S) strains of Plasmodium falciparum, with IC₅₀ values in the range of 0.

View Article and Find Full Text PDF

A new series of simple endoperoxides, characterized by a 3-methoxy-1,2-dioxane scaffold, was designed on the basis of a previously developed pharmacophore. Through a simplified and versatile scheme of synthesis, which utilizes cheap and commercially available starting materials, it was possible to obtain several structurally and stereochemically different compounds that were tested against P. falciparum.

View Article and Find Full Text PDF

Several oxime containing molecules, characterized by a SAHA-like structure, were explored to select a potentially new biasing binding element for the zinc in HDAC catalytic site. All compounds were evaluated for their in vitro inhibitory activity against the 11 human HDACs isoforms. After identification of a "hit" molecule, a programmed variation at the cap group and at the linker was carried out in order to increase HDAC inhibition and/or paralogue selectivity.

View Article and Find Full Text PDF

The antioxidant radical scavenging capacity of pyranoanthocyanins present in aged wine and coming from the chemical transformation undergone by anthocyanins was theoretically explored by DFT/B3LYP methods. The two main working mechanisms (H atom donation and single-electron transfer) were investigated, and the O-H bond dissociation energy (BDE) and ionization potential (IP) parameters were computed in the gas phase and in water and benzene solutions. Results indicated that systems possessing the catechol functionality as well as the o-dimethoxy motif are good candidates to donate a H atom to the free radicals, inactivating them.

View Article and Find Full Text PDF

The potential energy profiles for the Fe+- and Mn+-assisted reduction of N2O by CO were studied at the B3LYP density functional level in order to get the differences in the reaction mechanisms determining the efficiency of iron and the inactivity of manganese as ionic catalysts. Both ground and excited states of cations were taken into account in view of a possible participation of the highest multiplicities to the reduction process. Results indicated that a spin inversion occurs in the rate-determining step of iron ion-catalyzed reaction that improves the performance of the cation.

View Article and Find Full Text PDF