Objective: The balance between benefits and risks of discordant outcomes makes the Genome-Wide Non-Invasive Prenatal Test (GW-NIPT) controversial. This study aims to evaluate performance and clinical utility in a wide cohort of unselected clinical cases from a single center when a standardized protocol is applied and integrated with a secondary algorithm for data interpretation.
Method: In 2 years, over 70,000 pregnant patients underwent GW-NIPT for fetal common trisomies, sex chromosome aneuploidies, rare autosomal aneuploidies, segmental abnormalities (CNVs ≥ 7 Mb) and microdeletions (CNVs < 7 Mb).
Objective: In this study, we expanded conventional cell-free fetal DNA (cfDNA)-based non-invasive prenatal testing (NIPT) to cover the entire genome. We aimed to compare the performance of the two tests in a large general population of pregnant women, in order to assess the clinical utility of the genome-wide screening.
Method: Genome-wide cfDNA analysis was offered to 12 114 pregnant women undergoing NIPT for common fetal aneuploidy.
Objective: Several non-invasive prenatal testing (NIPT) methods, which analyze circulating fetal cell-free DNA (cfDNA) in maternal plasma, suggest a fetal fraction (FF) ≥ 4% for a reportable result, with the assumption that fetal aneuploidies may not be detectable at lower FF. This study determined the actual limit of detection (LOD) of a massively parallel sequencing-based NIPT method and evaluated its performance in testing samples with low FF.
Method: An experimental model, involving the creation of artificial plasma mixtures with a final aneuploid FF ranging from 1% to 4%, simulated samples at different proportions of fetal cfDNA.
Environ Biosafety Res
March 2009
It is widely acknowledged that plant-made pharmaceuticals (PMPs) offer numerous benefits, including inexpensive production, biological safety and the facility for production at agricultural scale. At the same time, it is important to minimize any potential risk associated with this new technology, including the potential release of bioactive proteins into the environment. To address this issue, we studied transgenic Nicotiana benthamiana and Nicotiana tabacum plants expressing two recombinant single-chain variable fragment (scFv) antibodies, respectively scFvB9 and scFvH10.
View Article and Find Full Text PDF