We aim to identify the spatial distribution of vegetation and its growth dynamics with the purpose of obtaining a qualitative assessment of vegetation characteristics tied to its condition, productivity and health, and to land degradation. To do so, we compare a statistical model of vegetation growth and land surface imagery derived vegetation indices. Specifically, we analyze a stochastic cellular automata model and data obtained from satellite images, namely using the normalized difference vegetation index and the leaf area index.
View Article and Find Full Text PDFRecent experimental observation of weak ergodicity breaking in Rydberg atom quantum simulators has sparked interest in quantum many-body scars-eigenstates which evade thermalization at finite energy densities due to novel mechanisms that do not rely on integrability or protection by a global symmetry. A salient feature of some quantum many-body scars is their subvolume bipartite entanglement entropy. In this Letter, we demonstrate that such exact many-body scars also possess extensive multipartite entanglement structure if they stem from an su(2) spectrum generating algebra.
View Article and Find Full Text PDFWe propose a class of mean-field models for the isostatic transition of systems of soft spheres, in which the contact network is modeled as a random graph and each contact is associated to d degrees of freedom. We study such models in the hypostatic, isostatic, and hyperstatic regimes. The density of states is evaluated by both the cavity method and exact diagonalization of the dynamical matrix.
View Article and Find Full Text PDF