Publications by authors named "Francesca Peiro"

AgCuSe nanoparticles could contribute to the growth of strongly light-absorbing thin films and solids with fast ion mobility, among other potential properties. Nevertheless, few methods have been developed so far for the synthesis of AgCuSe nanoparticles, and those reported deliver nanostructures with relatively large sizes and broad size and shape distributions. In this work, a colloidal cation exchange method is established for the easy synthesis of AgCuSe NPs with ca.

View Article and Find Full Text PDF

Grain boundary (GB) mass transport, and chemistry exert a pronounced influence on both the performance and stability of electrodes for solid oxide electrochemical cells. Lanthanum strontium cobalt ferrite (LSCF6428) is applied as a model mixed ionic and electronic conducting (MIEC) perovskite oxide. The cation-vacancy distribution at the GBs is studied at both single and multi-grain scales using high-resolution characterization techniques and computational approaches.

View Article and Find Full Text PDF

Recent advances in machine learning (ML) have highlighted a novel challenge concerning the quality and quantity of data required to effectively train algorithms in supervised ML procedures. This article introduces a data augmentation (DA) strategy for electron energy loss spectroscopy (EELS) data, employing generative adversarial networks (GANs). We present an innovative approach, called the data augmentation generative adversarial network (DAG), which facilitates data generation from a very limited number of spectra, around 100.

View Article and Find Full Text PDF

Machine Learning (ML) strategies applied to Scanning and conventional Transmission Electron Microscopy have become a valuable tool for analyzing the large volumes of data generated by various S/TEM techniques. In this work, we focus on Electron Energy Loss Spectroscopy (EELS) and study two ML techniques for classifying spectra in detail: Support Vector Machines (SVM) and Artificial Neural Networks (ANN). Firstly, we systematically analyze the optimal configurations and architectures for ANN classifiers using random search and the tree-structured Parzen estimator methods.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined the electrical resistance of a 3D-BiTe nanowire network at low temperatures, finding that resistance increases were consistent with the Anderson model of localization.
  • Magnetoresistance tests revealed a unique weak antilocalization signature, suggesting that electron transport occurred along two perpendicular directions due to the nanowire arrangement.
  • Coherence length measurements indicated significant differences, with 700 nm across transversal nanowires and only 100 nm along individual nanowires, potentially explaining the increased Seebeck coefficient in the nanonetwork compared to single nanowires.
View Article and Find Full Text PDF
Article Synopsis
  • The development of simple and flexible methods for creating ternary and hybrid nanostructured semiconductors is crucial for applications in areas like optoelectronics, thermoelectricity, and catalysis.
  • This study introduces a new colloidal method to produce hybrid Au-AgX nanoparticles (where X can be S or Se) under mild conditions, utilizing reactions between Au and AgX precursors in solution.
  • The research highlights that a ternary AuAgX phase forms at the interface of metallic and chalcogenide domains through a solid-state electrochemical reaction, enhancing the stability and integration of these hybrid nanoparticle systems.
View Article and Find Full Text PDF

In this work, the effect of CuPt ordering on the optoelectronic properties of GaInP is studied by combining transmission electron microscopy measurements and density functional theory (DFT) calculations. GaInP layers were grown by metal organic vapor phase epitaxy with a CuPt single-variant-induced ordering due to the intentional misorientation of the Ge(001) substrate. Moreover, the degree of order was controlled using Sb as the surfactant without changing other growth parameters.

View Article and Find Full Text PDF

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) and uniform manifold approximation and projection (UMAP), two new state-of-the-art algorithms for clustering analysis, and dimensionality reduction, respectively, are proposed for the segmentation of core-loss electron energy loss spectroscopy (EELS) spectrum images. The performances of UMAP and HDBSCAN are systematically compared to the other clustering analysis approaches used in EELS in the literature using a known synthetic dataset. Better results are found for these new approaches.

View Article and Find Full Text PDF

Tuning oxygen mass transport properties at the nanoscale offers a promising approach for developing high performing energy materials. A number of strategies for engineering interfaces with enhanced oxygen diffusivity and surface exchange have been proposed. However, the origin and the magnitude of such local effects remain largely undisclosed to date due to the lack of direct measurement tools with sufficient resolution.

View Article and Find Full Text PDF

Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/FeO core/shell nanocubes by electron magnetic circular dichroism (EMCD).

View Article and Find Full Text PDF

The nanoscale magnetic configuration of self-assembled groups of magnetite 40 nm cubic nanoparticles has been investigated by means of electron holography in the transmission electron microscope (TEM). The arrangement of the cubes in the form of chains driven by the alignment of their dipoles of single nanocubes is assessed by the measured in-plane magnetic induction maps, in good agreement with theoretical calculations.

View Article and Find Full Text PDF

Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion-ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized.

View Article and Find Full Text PDF

Low-power, high-performance metal-insulator-metal (MIM) non-volatile resistive memories based on HfO high- k dielectric are fabricated using a drop-on-demand inkjet printing technique as a low-cost and eco-friendly method. The characteristics of resistive switching of Pt (bottom)/HfO/Ag (top) stacks on Si/SiO substrates are investigated in order to study the bottom electrode's interaction with the HfO dielectric layer and the resulting effects on resistive switching. The devices show low Set and Reset voltages, high ON/OFF current ratio, and relatively low switching current (∼1 μA), which are comparable to the characteristics of current commercial CMOS memories.

View Article and Find Full Text PDF

The physicochemical properties of spinel oxide magnetic nanoparticles depend critically on both their size and shape. In particular, spinel oxide nanocrystals with cubic morphology have shown superior properties in comparison to their spherical counterparts in a variety of fields, like, for example, biomedicine. Therefore, having an accurate control over the nanoparticle shape and size, while preserving the crystallinity, becomes crucial for many applications.

View Article and Find Full Text PDF

Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proven that strain-induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions.

View Article and Find Full Text PDF

Electric-field-controlled magnetism can boost energy efficiency in widespread applications. However, technologically, this effect is facing important challenges: mechanical failure in strain-mediated piezoelectric/magnetostrictive devices, dearth of room-temperature multiferroics, or stringent thickness limitations in electrically charged metallic films. Voltage-driven ionic motion (magneto-ionics) circumvents most of these drawbacks while exhibiting interesting magnetoelectric phenomena.

View Article and Find Full Text PDF

The atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel FeO/MnO core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope.

View Article and Find Full Text PDF

The assembly of colloidal nanocrystals (NCs) is a unique strategy to produce porous materials with high crystallinity and unmatched control over structural and chemical parameters. This strategy has been demonstrated mostly for single-component nanomaterials. In the present work, we report the gelation of colloidal NC solutions driven by the electrostatic interaction of oppositely charged NCs.

View Article and Find Full Text PDF

Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance.

View Article and Find Full Text PDF

We present a novel method to produce crystalline oxide aerogels which is based on the cross-linking of preformed colloidal nanocrystals (NCs) triggered by propylene oxide (PO). Ceria and titania were used to illustrate this new approach. Ceria and titania colloidal NCs with tuned geometry and crystal facets were produced in solution from the decomposition of a suitable salt in the presence of oleylamine (OAm).

View Article and Find Full Text PDF

Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder.

View Article and Find Full Text PDF

The manufacturing of semiconducting films using solution-based approaches is considered a low cost alternative to vacuum-based thin film deposition strategies. An additional advantage of solution processing methods is the possibility to control the layer nano/microstructure. Here, we detail the production of mesoporous CuGaS₂ (CGS) and ZnS layers from spin-coating and subsequent cross-linking through chalcogen-chalcogen bonds of properly functionalized nanocrystals (NCs).

View Article and Find Full Text PDF

In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyze electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from FeO/MnO core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra.

View Article and Find Full Text PDF
Article Synopsis
  • Encapsulation of oleic acid-capped iron oxide nanoparticles (OA-IONPs) with cetyltrimethylammonium (CTA) creates spherical iron oxide nanoparticle clusters (IONPCs), but their chemical behavior was previously underexplored.
  • The study reveals that dispersing IONPCs in an ethyl acetate/acetate buffer system allows for a unique ligand exchange, converting hydrophobic OA-IONPs into hydrophilic acetate-capped nanoparticles (Ac-IONPs).
  • Additionally, introducing silica precursors during the ligand-exchange process leads to the formation of core-shell-shell nanoparticles (IONPs@acetate@SiO), with a micellar fusion mechanism facilitating the silica coating around individual IONPs.
View Article and Find Full Text PDF

Resistant and efficient electrocatalysts for hydrogen evolution reaction (HER) are desired to replace scarce and commercially expensive platinum electrodes. Thin-film electrodes of metal carbides are a promising alternative due to their reduced price and similar catalytic properties. However, most of the studied structures neglect long-lasting chemical and structural stability, focusing only on electrochemical efficiency.

View Article and Find Full Text PDF