ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated.
View Article and Find Full Text PDFPatients with hematological malignancies and past serological evidence of hepatitis B are at risk for HBV reactivation. In myeloproliferative neoplasms, continuous treatment with the JAK 1/2 inhibitor ruxolitinib confers a moderate risk of reactivation (1-10%); nevertheless, no prospective randomized data are available to strongly recommend HBV prophylaxis in these patients. Here, we report a case of primary myelofibrosis and past serological evidence of HBV infection, treated with ruxolitinib and concomitant lamivudine, developing HBV reactivation due to premature withdrawal of prophylaxis.
View Article and Find Full Text PDFNerve growth factor (NGF), the prototypical neurotrophic factor, is involved in the maintenance and growth of specific neuronal populations, whereas its precursor, proNGF, is involved in neuronal apoptosis. Binding of NGF or proNGF to TrkA, p75 , and VP10p receptors triggers complex intracellular signaling pathways that can be modulated by endogenous small-molecule ligands. Here, we show by isothermal titration calorimetry and NMR that ATP binds to the intrinsically disordered pro-peptide of proNGF with a micromolar dissociation constant.
View Article and Find Full Text PDFExperiments with cell cultures and animal models have provided solid support for the assumption that Nerve Growth Factor (NGF) plays a key role in the regulation of neuronal cell survival and death. Recently, endogenous ligands have been proposed as physiological modulators of NGF biological activity as part of this regulatory cascade. However, the structural and mechanistic determinants for NGF bioactivity remain to be elucidated.
View Article and Find Full Text PDFThe Nerve Growth Factor (NGF) neurotrophin acts in the maintenance and growth of neuronal populations. Despite the detailed knowledge of NGF's role in neuron physiology, the structural and mechanistic determinants of NGF bioactivity modulated by essential endogenous ligands are still lacking. We present the results of an integrated structural and advanced computational approach to characterize the extracellular ATP-NGF interaction.
View Article and Find Full Text PDFBackground: Raltegravir (RAL) is considered one of the better-tolerated antiretroviral medications, due to limited side effects and minimal drug-drug interactions. Matherials and Methods: We retrospectively evaluated 96 HIV+, over 60 years old, experienced patients who had switched from any antiretroviral drug to raltegravir-based nuc-sparing or standard nucleoside-backbone regimens. A control group with patients aged under 60 years old was included.
View Article and Find Full Text PDFNerve Growth Factor (NGF), the prototype of the neurotrophin family, is essential for maintenance and growth of different neuronal populations. The X-ray crystal structure of NGF has been known since the early '90s and shows a β-sandwich fold with extensive loops that are involved in the interaction with its binding partners. Understanding the dynamical properties of these loops is thus important for molecular recognition.
View Article and Find Full Text PDFThe homeostasis between mature neurotrophin NGF and its precursor proNGF is thought to be crucial in physiology and in pathological states. Therefore, the measurement of the relative amounts of NGF and proNGF could serve as a footprint for the identification of disease states, for diagnostic purposes. Since NGF is part of proNGF, their selective identification with anti-NGF antibodies is not straightforward.
View Article and Find Full Text PDFBackground: Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A "painless" human NGF (hNGF R100E) mutant has been engineered.
View Article and Find Full Text PDFThe homodimer NGF (nerve growth factor) exerts its neuronal activity upon binding to either or both distinct transmembrane receptors TrkA and p75(NTR). Functionally relevant interactions between NGF and these receptors have been proposed, on the basis of binding and signaling experiments. Namely, a ternary TrkA/NGF/p75(NTR) complex is assumed to be crucial for the formation of the so-called high-affinity NGF binding sites.
View Article and Find Full Text PDFNGF is the prototype member of the neurotrophin family of proteins that promote the survival and growth of selected neurons in the central and peripheral nervous systems. As for all neurotrophins, NGF is translated as a pre-pro-protein. Over the years, NGF and proNGF of either human or mouse origin, given their high degree of homology, have been exploited for numerous applications in biomedical sciences.
View Article and Find Full Text PDFBackground: Growing evidence shows that, in vivo, the precursor of Nerve Growth Factor (NGF), proNGF, displays biological activities different from those of its mature NGF counterpart, mediated by distinct, and somewhat complementary, receptor binding properties. NGF and proNGF induce distinct transcriptional signatures in target cells, highlighting their different bioactivities. In vivo, proNGF and mature NGF coexist.
View Article and Find Full Text PDFBackground: The Raltegravir Switch for Toxicity or Adverse Events (RASTA) Study is a 2-arm randomized pilot study exploring the safety and efficacy at 48 weeks of a treatment switch to raltegravir associated with tenofovir/emtricitabine or abacavir/lamivudine in patients with regimens with optimal virological control.
Methods: Patients treated with stable protease inhibitor (PI)-, non-nucleoside reverse transcriptase inhibitor (NNRTI)-, or nucleoside reverse transcriptase inhibitor (NRTI)-based regimens, with HIV-RNA levels < 50 copies/ml for ≥ 3 months and a CD4 cell count > 200 cells/μl were eligible. Enrollment of 40 patients was planned: at baseline patients were randomized 1:1 to switch to raltegravir plus tenofovir/emtricitabine (arm A) or abacavir/lamivudine (arm B).
Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration.
View Article and Find Full Text PDFIn neurons, specific mRNAs are transported in a translationally repressed manner along dendrites or axons by transport ribonucleic-protein complexes called RNA granules. ZBP1 is one RNA binding protein present in transport RNPs, where it transports and represses the translation of cotransported mRNAs, including β-actin mRNA. The release of β-actin mRNA from ZBP1 and its subsequent translation depends on the phosphorylation of ZBP1 by Src kinase, but little is known about how this process is regulated.
View Article and Find Full Text PDFproNGF, the precursor of the neurotrophin NGF, is widely expressed in central and peripheral nervous system. Its physiological functions are still largely unknown, although it emerged from studies in the last decade that proNGF has additional and distinct functions with respect to NGF, besides acting chaperone-like for NGF folding during its biogenesis. The regulation of proNGF/NGF ratio represents a crucial process for homeostasis of brain and other tissues, and understanding the molecular aspects of these differences is important.
View Article and Find Full Text PDFNerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages.
View Article and Find Full Text PDFNerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein.
View Article and Find Full Text PDFThe biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a "less potent NGF" is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified.
View Article and Find Full Text PDFExpert Opin Drug Deliv
October 2011
Introduction: Among the range of therapeutic protein candidates for new generation treatments of neurological diseases, neurotrophic factors and recombinant antibodies hold the greatest potential. However, major difficulties in their safe and effective delivery to the brain severely limit these applications. The BBB restricts the exchange of proteins between the plasma and the CNS.
View Article and Find Full Text PDFIt is necessary to understand the molecular nature of the virus population that persists in cellular reservoirs. To achieve this we planned to characterize the patterns of resistance of HIV-1 in CD14(+) monocytes, CD4(+) T cells, and plasma. Blood samples were collected from 42 patients treated for HIV: 32 were in virological failure and in 10 viremia was undetectable.
View Article and Find Full Text PDF