In the field of regenerative medicine, acrylated epoxidized vegetable oils are emerging as a promising avenue of exploration. The aim of this study is to evaluate the degradability of two formulations of acrylated epoxidized soybean oil (AESO): pure AESO and AESO diluted with soybean oil (SO) for potential bioprintability applications. The comprehensive investigation of these two polymeric formulations included optimization of polymerization conditions, confirmation of cytocompatibility, and, most importantly, the study of their degradability.
View Article and Find Full Text PDFNanoenergetics are defined as a class of nanomaterials that possess the ability to release energy in certain situations. These properties have been studied and deepened in recent years, so much so that nanoenergetics have been introduced into the use of the weapons industry, among others. It is therefore an emerging reality that deserves attention with regard to potential harmful effects on human and environmental health.
View Article and Find Full Text PDFMost tablets put on the market are coated with polymers soluble in water. The Opadry II 85 series from Colorcon Inc., is a family of PVA-based products marketed since the 1990s.
View Article and Find Full Text PDFThis work is part of a research project aimed at developing a bio-based binder, composed mainly of polylactic acid (PLA), to produce Ti6Al4V feedstock suitable for use in MAM (Metal Additive Manufacturing) via mFFF (metal Fused Filament Fabrication), in order to manufacture a titanium alloy specimen. While in Bragaglia et al. the mechanical characteristics of this sample were analyzed, the aim used of this study is to compare the mentioned mFFF process with one of the most used MAM processes in aerospace applications, known as Selective Laser Sintering (SLS), based on the Life Cycle Assessment (LCA) method.
View Article and Find Full Text PDFThis study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.
View Article and Find Full Text PDFIn this paper, poly-ether-ether-ketone (PEEK) carbon-nanotube (CNT) self-monitoring composites at different levels of filler loading (i.e., 3, 5 and 10% by weight) have been extruded as 3D-printable filaments, showing gauge factor values of 14.
View Article and Find Full Text PDFThe reprocessing of vegetal-waste represents a new research field in order to design novel biomaterials for potential biomedical applications and in food industry. Here we obtained a biomaterial from Lupinus albus L. hull (LH) that was characterized micro-structurally by scanning electron microscopy and for its antimicrobial and scaffolding properties.
View Article and Find Full Text PDFThis work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has been performed.
View Article and Find Full Text PDFIn this paper, a hybrid commercially available alumina/polymer filament was 3D printed and thermally treated (debinding and sintering) to obtain ceramic parts. Microscopic and spectroscopic analysis was used to thoroughly characterize the green and sintered parts in terms of their mesostructured, as well as their flexural properties. The sintered samples show an α alumina crystalline phase with a mean density of 3.
View Article and Find Full Text PDFThe health monitoring of structures is of great interest in order to check components' structural life and monitor damages during operation. Self-monitoring materials can provide both the structural and monitoring functionality in one component and exploit their piezoresistive behavior, namely, the variation of electrical resistivity with an applied mechanical strain. In this work, self-monitoring plies were developed to be inserted into glass-fiber reinforced epoxy-based laminates in order to achieve structural monitoring.
View Article and Find Full Text PDFRecent improvements in additive layer manufacturing (ALM) have provided new designs of geometrically complex structures with lighter materials and low processing costs. The use of additive manufacturing in spacecraft production is opening up many new possibilities in both design and fabrication, allowing for the reduction of the weight of the structure subsystems. In this aim, polymeric ALM structures can become a choice, in terms of lightweight and demisability, as far as good thermomechanical properties.
View Article and Find Full Text PDFThe present investigation explores the microscopic aspects of cell-laden hydrogels at high resolutions, using three-dimensional cell cultures in semi-synthetic constructs that are of very high water content (>98% water). The study aims to provide an imaging strategy for these constructs, while minimizing artefacts. Constructs of poly(ethylene glycol)-fibrinogen and fibrin hydrogels containing embedded mesenchymal cells (human dermal fibroblasts) were first imaged by confocal microscopy.
View Article and Find Full Text PDFThe dilatancy (Shear-thickening) is a time-independent rheological behaviour exhibited by some non-Newtonian fluids. These fluids manifest a surge in the apparent viscosity with an increase in the shear rate. If these fluids are encapsulated, they can be used to manufacture high-end stab resistance inserts (Cecchini et al.
View Article and Find Full Text PDFThe design of biomaterial platforms able to release bioactive molecules is mandatory in tissue repair and regenerative medicine. In this context, electrospinning is a user-friendly, versatile and low-cost technique, able to process different kinds of materials in micro- and nano-fibers with a large surface area-to-volume ratio for an optimal release of gaseous signaling molecules. Recently, the antioxidant and anti-inflammatory properties of the endogenous hydrogen sulfide (H₂S), as well as its ability to stimulate relevant biochemical processes on the growth of mesenchymal stem cells (MSC), have been investigated.
View Article and Find Full Text PDFIn the food packaging sector many efforts have been (and are) devoted to the development of new materials in order to reply to an urgent market demand for green and eco-sustainable products. Particularly a lot of attention is currently devoted both to the use of compostable and biobased polymers as innovative and promising alternative to the currently used petrochemical derived polymers, and to the re-use of waste materials coming from agriculture and food industry. In this work, multifunctional eco-sustainable systems, based on poly(lactic acid) (PLA) as biopolymeric matrix, diatomaceous earth as reinforcing filler and spent coffee grounds extract as oxygen scavenger, were produced for the first time, in order to provide a simultaneous improvement of mechanical and gas barrier properties.
View Article and Find Full Text PDF. The neonatal immune system is not fully developed at birth; newborns have adequate lymphocytes counts but these cells lack function. .
View Article and Find Full Text PDFA native isolate of the colonial benthic diatom Staurosirella pinnata was cultivated for biosilica production. The silicified cell walls (frustules) were used as a source of homogeneous and structurally predictable porous biosilica for dye trapping and random laser applications. This was coupled with the extraction of lipids from biomass showing potential to fabricate photoactive composite materials sustainably.
View Article and Find Full Text PDFThe improvement of solubility and/or dissolution rate of poorly soluble natural compounds is an ideal strategy to make them optimal candidates as new potential drugs. Accordingly, the allyl sulfur compounds and omega-3 fatty acids are natural hydrophobic compounds that exhibit two important combined properties: cardiovascular protection and antitumor activity. Here, we have synthesized and characterized a novel formulation of diallyl disulfide (DADS) and α-linolenic acid (ALA) as protein-nanoemulsions (BAD-NEs), using ultrasounds.
View Article and Find Full Text PDFIn this paper, we show that it is possible to synthesize carbon-based three-dimensional networks by adding sulfur, as growth enhancer, during the synthesis process. The obtained material is self-supporting and consists of curved and interconnected carbon nanotubes and to lesser extent of carbon fibers. Studies on the microstructure indicate that the assembly presents a marked variability in the tube external diameter and in the inner structure.
View Article and Find Full Text PDFSelf-assembled hierarchical solid surfaces are very interesting for wetting phenomena, as observed in a variety of natural and artificial surfaces. Here, we report single-walled (SWCNT) and multi-walled carbon nanotube (MWCNT) thin films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, that was deposited at room temperature by a dry-transfer printing method on glass. Furthermore, the investigation of carbon nanotube films through scanning electron microscopy (SEM) reveals the multi-scale hierarchical morphology of the self-assembled carbon nanotube random networks.
View Article and Find Full Text PDFWe have taken advantage of the native surface roughness and the iron content of AISI 316 stainless steel to directly grow multi-walled carbon nanotube (MWCNT) random networks by chemical vapor deposition (CVD) at low-temperature (1000°C) without the addition of any external catalysts or time-consuming pre-treatments. In this way, super-hydrophobic MWCNT films on stainless steel sheets were obtained, exhibiting high contact angle values (154°C) and high adhesion force (high contact angle hysteresis). Furthermore, the investigation of MWCNT films with scanning electron microscopy (SEM) reveals a two-fold hierarchical morphology of the MWCNT random networks made of hydrophilic carbonaceous nanostructures on the tip of hydrophobic MWCNTs.
View Article and Find Full Text PDFA hierarchical structure is an assembly with a multi-scale morphology and with a large and accessible surface area. Recent advances in nanomaterial science have made increasingly possible the design of hierarchical surfaces with specific and tunable properties. Here, we report the fractal analysis of hierarchical single-walled carbon nanotube (SWCNT) films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, then deposited by drytransfer printing method on several substrates, at room temperature.
View Article and Find Full Text PDFThe fabrication of ternary fibrous mats based on poly(lactic) acid (PLA), cellulose nanocrystals (CNCs, both pristine (p-CNCs) and modified with a commercial surfactant (s-CNCs)) and silver (Ag) nanoparticles by electrospinning is reported. Amounts of 1 and 5 wt.% were selected for Ag and CNCs, respectively.
View Article and Find Full Text PDFA modified emulsion synthesis of poly(methylmethacrylate) (PMMA) with the Eosin Y (EY), commercial chromophore, yields dye doped polymeric nanoparticles (PMMA@EY). A systematic investigation on the experimental parameters (monomer and initiator concentration, reaction time and MMA/EY molar ratio) has been explored to modulate physico-chemical properties of the dye doped polymeric colloids. Spherical shaped particles, doped with EY (0.
View Article and Find Full Text PDF