Publications by authors named "Francesca Mastrogiuseppe"

The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables.

View Article and Find Full Text PDF

The ability to associate sensory stimuli with abstract classes is critical for survival. How are these associations implemented in brain circuits? And what governs how neural activity evolves during abstract knowledge acquisition? To investigate these questions, we consider a circuit model that learns to map sensory input to abstract classes via gradient-descent synaptic plasticity. We focus on typical neuroscience tasks (simple, and context-dependent, categorization), and study how both synaptic connectivity and neural activity evolve during learning.

View Article and Find Full Text PDF

Neural computations are currently investigated using two separate approaches: sorting neurons into functional subpopulations or examining the low-dimensional dynamics of collective activity. Whether and how these two aspects interact to shape computations is currently unclear. Using a novel approach to extract computational mechanisms from networks trained on neuroscience tasks, here we show that the dimensionality of the dynamics and subpopulation structure play fundamentally complementary roles.

View Article and Find Full Text PDF

An emerging paradigm proposes that neural computations can be understood at the level of dynamic systems that govern low-dimensional trajectories of collective neural activity. How the connectivity structure of a network determines the emergent dynamical system, however, remains to be clarified. Here we consider a novel class of models, gaussian-mixture, low-rank recurrent networks in which the rank of the connectivity matrix and the number of statistically defined populations are independent hyperparameters.

View Article and Find Full Text PDF

Recurrent neural networks have been extensively studied in the context of neuroscience and machine learning due to their ability to implement complex computations. While substantial progress in designing effective learning algorithms has been achieved, a full understanding of trained recurrent networks is still lacking. Specifically, the mechanisms that allow computations to emerge from the underlying recurrent dynamics are largely unknown.

View Article and Find Full Text PDF

Large-scale neural recordings have established that the transformation of sensory stimuli into motor outputs relies on low-dimensional dynamics at the population level, while individual neurons exhibit complex selectivity. Understanding how low-dimensional computations on mixed, distributed representations emerge from the structure of the recurrent connectivity and inputs to cortical networks is a major challenge. Here, we study a class of recurrent network models in which the connectivity is a sum of a random part and a minimal, low-dimensional structure.

View Article and Find Full Text PDF

Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongncj6ias5rp3r3v64ihf9gvj5rg0mh9r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once